Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)
Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.
Redes neuronales: así de sencillo (Parte 79): Adición de solicitudes en el contexto de estado (FAQ)
En el artículo anterior, nos familiarizamos con uno de los métodos para detectar objetos en una imagen. Sin embargo, el procesamiento de una imagen estática se diferencia ligeramente del trabajo con series temporales dinámicas que incluyen la dinámica de los precios que hemos analizado. En este artículo les presentaré un método de detección de objetos en vídeo que resulta algo más cercano al problema que estamos resolviendo.
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
Puntuación de propensión (Propensity score) en la inferencia causal
Este artículo trata el tema del emparejamiento en la inferencia causal. El emparejamiento se usa para emparejar observaciones similares en un conjunto de datos. Esto es necesario para identificar correctamente los efectos causales, eliminando el sesgo. Hoy explicaremos cómo esto ayuda a crear sistemas comerciales basados en el aprendizaje automático que se vuelven más robustos con nuevos datos en los que no se ha entrenado. El papel principal lo asignaremos a la puntuación de propensión, ampliamente utilizada en la inferencia causal.
Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA
¿Podemos beneficiarnos de la estacionalidad al crear modelos para Deep Learning con Python? ¿Ayuda el filtrado de datos para los modelos ONNX a obtener mejores resultados? ¿Qué periodo de tiempo debemos utilizar? Trataremos todo esto a lo largo de este artículo.
Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales
El agrupamiento basado en densidad para aplicaciones con ruido (DBSCAN) es una forma no supervisada de agrupar datos que apenas requiere parámetros de entrada, salvo solo 2, lo cual, en comparación con otros enfoques como k-means, es una ventaja. Profundizamos en cómo esto podría ser constructivo para probar y eventualmente operar con Asesores Expertos montados por Wizard MQL5.
Trabajamos con modelos ONNX en formato float16 y float8
Los formatos de datos usados para representar modelos de aprendizaje automático desempeñan un papel clave en su eficacia. En los últimos años, se han desarrollado varios tipos de datos nuevos específicamente para trabajar con modelos de aprendizaje profundo. En este artículo nos centraremos en dos nuevos formatos de datos que se han generalizado en los modelos modernos.
Superar los retos de integración de ONNX
ONNX es una gran herramienta para la integración de código complejo de IA entre diferentes plataformas, es una gran herramienta que viene con algunos desafíos que uno debe abordar para obtener el máximo provecho de ella, En este artículo se discuten los problemas comunes que podría enfrentar y cómo mitigarlos.
Clase básica de algoritmos de población como base para una optimización eficaz
El presente material supone un intento único de investigación para combinar una variedad de algoritmos de población en una sola clase y simplificar la aplicación de técnicas de optimización. Este enfoque no solo descubre oportunidades para el desarrollo de nuevos algoritmos, incluidas variantes híbridas, sino que también crea un banco de pruebas básico y versátil. Este banco se convertirá así en una herramienta clave para seleccionar el algoritmo óptimo según un problema específico.
Redes neuronales: así de sencillo (Parte 78): Detector de objetos basado en el Transformer (DFFT)
En este artículo, le propongo abordar la creación de una estrategia comercial desde una perspectiva diferente. Hoy no pronosticaremos los movimientos futuros de los precios, sino que trataremos de construir un sistema comercial basado en el análisis de datos históricos.
Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton
Las máquinas de vectores de soporte clasifican los datos en función de clases predefinidas explorando los efectos de aumentar su dimensionalidad. Se trata de un método de aprendizaje supervisado bastante complejo dado su potencial para tratar datos multidimensionales. Para este artículo consideramos cómo su implementación muy básica de datos bidimensionales puede hacerse más eficientemente con el polinomio de Newton al clasificar precio-acción.
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5
En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)
Embárquese en la siguiente fase de nuestro viaje MQL5. En este artículo para principiantes analizaremos el resto de funciones de la matriz y desmitificaremos conceptos complejos para que pueda elaborar estrategias de negociación eficaces. Hablaremos de ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse y ArraySort. Aumente su experiencia en negociación algorítmica con estas funciones de matriz esenciales. ¡Únase a nosotros en el camino hacia el dominio de MQL5!
El método de agrupamiento para el manejo de datos: Implementación del algoritmo iterativo multicapa en MQL5
En este artículo describimos la implementación del algoritmo iterativo multicapa del método de agrupamiento para el manejo de datos en MQL5.
Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)
En nuestros modelos, a menudo utilizamos varios algoritmos de atención. Y, probablemente, lo más frecuente es utilizar transformadores. Su principal desventaja es la necesidad de recursos. En este artículo, estudiaremos un nuevo algoritmo que puede ayudar a reducir los costes informáticos sin perder calidad.
Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer
Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias
Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)
Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
Red neuronal en la práctica: Recta secante
Como se explicó en la parte teórica, necesitamos usar regresiones lineales y derivadas cuando trabajamos con redes neuronales. ¿Pero por qué? La razón es que la regresión lineal es una de las fórmulas más simples que existen. Básicamente, una regresión lineal es solo una función afín. Sin embargo, cuando hablamos de redes neuronales, no nos interesan los efectos de la recta de regresión lineal. Lo que nos interesa es la ecuación que genera dicha recta. La recta generada poco importa. ¿Pero sabes cuál es la ecuación principal que hay que comprender? Si no, lee este artículo para empezar a comprenderlo.
Factorización de matrices: lo básico
Como el objetivo aquí es ser didáctico. Mantendré las cosas en su forma más sencilla. Es decir, implementaremos solo lo necesario: la multiplicación de matrices. Verás que esto será suficiente para simular la multiplicación de una matriz por un escalar. La gran dificultad que muchas personas tienen a la hora de implementar un código utilizando la factorización de matrices es que, a diferencia de una factorización escalar, donde en casi todos los casos el orden de los factores no altera el resultado, cuando se usan matrices, la cosa no es así.
Inferencia causal en problemas de clasificación de series temporales
En este artículo, examinaremos la teoría de la inferencia causal utilizando el aprendizaje automático, así como la implementación del enfoque personalizado en Python. La inferencia causal y el pensamiento causal tienen sus raíces en la filosofía y la psicología y desempeñan un papel importante en nuestra comprensión de la realidad.
Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo
En esta serie, seguiremos desvelando los secretos de la programación. En nuestro nuevo artículo, aprenderemos los fundamentos de las estructuras, las clases y las funciones de tiempo y adquiriremos nuevas habilidades para lograr una programación eficiente. Esta guía será probablemente útil no solo para los principiantes, sino también para los desarrolladores experimentados, ya que simplifica conceptos complejos, ofreciendo información valiosa para dominar MQL5. Así que hoy podrá seguir aprendiendo cosas nuevas, mejorando sus conocimientos de programación y dominando el mundo del trading algorítmico.
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación
Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.
Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost
AdaBoost, un potente algoritmo de refuerzo diseñado para elevar el rendimiento de sus modelos de IA. AdaBoost, abreviatura de Adaptive Boosting (refuerzo adaptativo), es una sofisticada técnica de aprendizaje por conjuntos que integra a la perfección los aprendices débiles, potenciando su fuerza predictiva colectiva.
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios
Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX
El proyecto consiste en utilizar Python para realizar previsiones basadas en el aprendizaje profundo en los mercados financieros. Exploraremos los entresijos de la comprobación del rendimiento del modelo utilizando métricas clave como el error medio absoluto (MAE, Mean Absolute Error), el error medio cuadrático (MSE, Mean Squared Error) y R-cuadrado (R2), y aprenderemos a envolverlo todo en un ejecutable. También haremos un fichero modelo ONNX con su EA.
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos
La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.
Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)
En este artículo analizaremos el principio de construcción de algoritmos multipoblacionales y como ejemplo de este tipo de algoritmos consideraremos la evolución de grupos sociales (ESG), un nuevo algoritmo de autor. Así, analizaremos los conceptos básicos, los mecanismos de interacción con la población y las ventajas de este algoritmo, y revisaremos su rendimiento en problemas de optimización.
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX
Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!
Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional
Las máquinas de Boltzmann restringidas (RBM, Restrictive Boltzmann Machines) son, en el nivel básico, una red neuronal de dos capas que es competente en la clasificación no supervisada a través de la reducción de la dimensionalidad. Tomamos sus principios básicos y examinamos si lo rediseñamos y entrenamos de forma poco ortodoxa, podríamos obtener un filtro de señal útil.
Aprendizaje automático y Data Science (Parte 18): La batalla por dominar la complejidad del mercado: SVD truncado frente a NMF
La descomposición del valor singular truncado (SVD, Singular Value Decomposition) y la factorización de matrices no negativas (NMF, Non-Negative Matrix Factorization) son técnicas de reducción de la dimensionalidad. Ambos desempeñan un papel importante en la elaboración de estrategias de negociación basadas en datos. Descubra el arte de reducir la dimensionalidad, desentrañar ideas y optimizar los análisis cuantitativos para obtener un enfoque informado que le permita navegar por las complejidades de los mercados financieros.
Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5
En este artículo, seguiremos estudiando los fundamentos de la programación MQL5. Hoy veremos los arrays, las funciones definidas por el usuario, los preprocesadores y el procesamiento de eventos. Para una mayor claridad, todos los pasos de cada explicación irán acompañado de un código. Esta serie de artículos sienta las bases para el aprendizaje de MQL5, prestando especial atención a la explicación de cada línea de código.
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II
En este artículo, analizaremos el algoritmo genético binario (BGA), que modela los procesos naturales que ocurren en el material genético de los seres vivos en la naturaleza.
Modelos de regresión de la biblioteca Scikit-learn y su exportación a ONNX
En este artículo exploraremos la aplicación de modelos de regresión del paquete Scikit-learn e intentaremos convertirlos al formato ONNX y utilizaremos los modelos resultantes dentro de programas MQL5. Adicionalmente, compararemos la precisión de los modelos originales con sus versiones ONNX tanto para precisión flotante como doble. Además, examinaremos la representación ONNX de los modelos de regresión con el fin de comprender mejor su estructura interna y sus principios de funcionamiento.
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte I
En este artículo, analizaremos varios métodos utilizados en algoritmos genéticos binarios y otros algoritmos poblacionales. Asimismo, repasaremos los principales componentes del algoritmo, como la selección, el cruce y la mutación, así como su impacto en el proceso de optimización. Además, estudiaremos las formas de presentar la información y su repercusión en los resultados de la optimización.
Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control
En este artículo, seguiremos familiarizándonos con el lenguaje de programación MQL5. Esta serie de artículos no es solo un tutorial, sino también una puerta de entrada al mundo de la programación. ¿Qué hace especiales a estos artículos? Hemos procurado que las explicaciones sean sencillas para que los conceptos complejos resulten accesibles a todos. Aunque el material es accesible, para obtener los mejores resultados será necesario reproducir activamente todo lo que vamos a tratar. Solo así obtendremos el máximo beneficio de estos artículos.
Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)
El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.
Algoritmos de optimización de la población: Algoritmo híbrido de optimización de forrajeo bacteriano con algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Este artículo presenta un nuevo enfoque para resolver problemas de optimización combinando las ideas de los algoritmos de optimización de forrajeo bacteriano (BFO) y las técnicas utilizadas en el algoritmo genético (GA) en un algoritmo híbrido BFO-GA. Dicha técnica utiliza enjambres bacterianos para buscar una solución óptima de manera global y operadores genéticos para refinar los óptimos locales. A diferencia del BFO original, ahora las bacterias pueden mutar y heredar genes.