
MQL5 Trading Toolkit (Teil 5): Die Bibliothek History Management EX5 um Positionsfunktionen erweitern
Erfahren Sie, wie Sie exportierbare EX5-Funktionen erstellen können, um historische Positionsdaten effizient abzufragen und zu speichern. In dieser Schritt-für-Schritt-Anleitung werden wir die Bibliothek History Management EX5 erweitern, indem wir Module entwickeln, die wichtige Eigenschaften der zuletzt geschlossenen Position abrufen. Dazu gehören Nettogewinn, Handelsdauer, Pip-basierter Stop-Loss, Take-Profit, Gewinnwerte und verschiedene andere wichtige Details.

Integration von Discord mit MetaTrader 5: Aufbau eines Handels-Bots mit Echtzeit-Benachrichtigungen
In diesem Artikel wird gezeigt, wie MetaTrader 5 und ein Discord-Server integriert werden können, um Handelsbenachrichtigungen in Echtzeit von jedem Ort aus zu erhalten. Wir werden sehen, wie man die Plattform und Discord konfiguriert, um die Übermittlung von Benachrichtigungen an Discord zu ermöglichen. Wir werden auch Sicherheitsfragen behandeln, die im Zusammenhang mit der Verwendung von WebRequests und Webhooks für solche Alarmierungslösungen auftreten.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 51): Verstärkungslernen mit SAC
Soft Actor Critic ist ein Reinforcement Learning Algorithmus, der 3 neuronale Netze verwendet. Ein Netzwerk für den Actor und 2 Critic-Netze. Diese maschinellen Lernmodelle werden in einer Master-Slave-Partnerschaft gepaart, in der die Kritiker modelliert werden, um die Prognosegenauigkeit des Akteursnetzwerks zu verbessern. Während wir in dieser Serie auch ONNX vorstellen, untersuchen wir, wie diese Ideen als nutzerdefiniertes Signal eines von einem Assistenten zusammengestellten Expert Advisors getestet werden können.

Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)
In diesem Artikel wird die Nachrichtenfilterung für einzelne Nachrichtenereignisse auf der Grundlage ihrer IDs implementiert. Darüber hinaus werden frühere SQL-Abfragen verbessert, um zusätzliche Informationen zu liefern oder die Laufzeit der Abfrage zu verkürzen. Außerdem wird der in den vorangegangenen Artikeln erstellte Code funktionsfähig gemacht.

Wie man ein volumenbasiertes Handelssystem aufbaut und optimiert (Chaikin Money Flow - CMF)
In diesem Artikel werden wir einen volumenbasierten Indikator, den Chaikin Money Flow (CMF), vorstellen, nachdem wir erläutert haben, wie er konstruiert, berechnet und verwendet werden kann. Wir werden verstehen, wie man einen nutzerdefinierten Indikator erstellt. Wir werden einige einfache Strategien vorstellen, die verwendet werden können, und sie dann testen, um zu verstehen, welche davon besser ist.

Erstellen von selbstoptimierenden Expert Advisors in MQL5 (Teil 3): Dynamische Trendfolge- und Mean-Reversion-Strategien
Die Finanzmärkte werden in der Regel entweder in eine Handelsspanne oder in einen Trendmodus eingeteilt. Diese statische Sichtweise des Marktes kann es uns leichter machen, kurzfristig zu handeln. Sie ist jedoch von der Realität des Marktes abgekoppelt. In diesem Artikel geht es darum, besser zu verstehen, wie genau sich die Finanzmärkte zwischen diesen beiden möglichen Modi bewegen und wie wir unser neues Verständnis des Marktverhaltens nutzen können, um Vertrauen in unsere algorithmischen Handelsstrategien zu gewinnen.

Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5
Dieser Artikel führt in die Arbeit mit integrierten Indikatoren in MQL5 ein und konzentriert sich auf die Erstellung eines RSI-basierten Expert Advisors (EA) mit einem projektbasierten Ansatz. Sie werden lernen, RSI-Werte abzurufen und zu nutzen, Liquiditätsdurchbrüche zu handhaben und die Handelsvisualisierung mit Chart-Objekten zu verbessern. Darüber hinaus wird in dem Artikel ein wirksames Risikomanagement hervorgehoben, einschließlich der Festlegung eines prozentualen Risikos, der Umsetzung von Risiko-Ertrags-Verhältnissen und der Anwendung von Risikomodifikationen zur Sicherung von Gewinnen.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 5): Volatilitätsnavigator EA
Die Marktrichtung zu bestimmen kann einfach sein, aber zu wissen, wann man einsteigen sollte, kann eine Herausforderung sein. Im Rahmen der Serie „Entwicklung eines Toolkit zur Analyse von Preisaktionen" freue ich mich, ein weiteres Tool vorzustellen, das Einstiegspunkte, Take-Profit-Levels und Stop-Loss-Platzierungen bietet. Um dies zu erreichen, haben wir die Programmiersprache MQL5 verwendet. In diesem Artikel wollen wir die einzelnen Schritte näher erläutern.

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie
Seien Sie dabei, wenn wir uns heute der Herausforderung stellen, eine Handelsstrategie rund um das USDJPY-Paar zu entwickeln. Wir handeln Kerzenmuster, die auf dem täglichen Zeitrahmen gebildet werden, weil sie potenziell mehr Kraft hinter sich haben. Unsere anfängliche Strategie war gewinnbringend, was uns ermutigte, die Strategie weiter zu verfeinern und zusätzliche Sicherheitsschichten hinzuzufügen, um das gewonnene Kapital zu schützen.

Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5
In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Lernmethoden in MQL5 vor und untersuchen ihre Wirksamkeit in verschiedenen Szenarien.

Automatisieren von Handelsstrategien in MQL5 (Teil 2): Das Breakout System Kumo mit Ichimoku und dem Awesome Oscillator
In diesem Artikel erstellen wir einen Expert Advisor (EA), der die Kumo Breakout-Strategie unter Verwendung des Indikators Ichimoku Kinko Hyo und des Awesome Oscillators automatisiert. Wir gehen durch den Prozess der Initialisierung von Indikator-Handles, der Erkennung von Ausbruchsbedingungen und der Codierung von automatischen Handelsein- und -ausgängen. Zusätzlich implementieren wir Trailing-Stops und die Positionsmanagement-Logik, um die Leistung des EA und seine Anpassungsfähigkeit an die Marktbedingungen zu verbessern.

Beherrschen von Dateioperationen in MQL5: Von Basic I/O bis zum Erstellen eines nutzerdefinierten CSV-Readers
Dieser Artikel konzentriert sich auf wesentliche MQL5-Dateiverarbeitungstechniken, die Handelsprotokolle, CSV-Verarbeitung und externe Datenintegration umfassen. Es bietet sowohl ein konzeptionelles Verständnis als auch praktische Anleitungen zur Programmierung. Der Leser lernt Schritt für Schritt, wie man eine nutzerdefinierte CSV-Importer-Klasse erstellt und erwirbt so praktische Fähigkeiten für reale Anwendungen.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 4): Der Analytik Forecaster EA
Wir gehen über die einfache Darstellung von analysierten Metriken in Charts hinaus und bieten eine breitere Perspektive, die auch die Integration von Telegram umfasst. Mit dieser Erweiterung können wichtige Ergebnisse über die Telegram-App direkt auf Ihr mobiles Gerät geliefert werden. Begleiten Sie uns in diesem Artikel auf dieser gemeinsamen Reise.

Handelseinblicke über das Volumen: Trendbestätigung
Die Enhanced Trend Confirmation Technique kombiniert Preisaktionen, Volumenanalysen und maschinelles Lernen, um echte Marktbewegungen zu identifizieren. Für die Handelsvalidierung sind sowohl Preisausbrüche als auch Volumensprünge (50 % über dem Durchschnitt) erforderlich, während ein neuronales LSTM-Netzwerk für zusätzliche Bestätigung sorgt. Das System verwendet eine ATR-basierte Positionsgröße und ein dynamisches Risikomanagement, wodurch es an verschiedene Marktbedingungen angepasst werden kann und gleichzeitig falsche Signale herausfiltert.

Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (III)
Willkommen zum dritten Teil unserer Trendserie! Heute werden wir uns mit der Verwendung von Divergenzen als Strategie zur Identifizierung optimaler Einstiegspunkte innerhalb des vorherrschenden Tagestrends beschäftigen. Wir werden auch einen nutzerdefinierten Gewinnsicherungsmechanismus einführen, der einem Trailing-Stop-Loss ähnelt, aber einzigartige Verbesserungen aufweist. Darüber hinaus werden wir den Experten Trend Constraint zu einer fortschrittlicheren Version ausbauen und eine neue Handelsausführungsbedingung einführen, die die bestehenden Bedingungen ergänzt. Im weiteren Verlauf werden wir die praktische Anwendung von MQL5 bei der Entwicklung von Algorithmen weiter erforschen und Ihnen tiefer gehende Einblicke und umsetzbare Techniken vermitteln.

MQL5 Handels-Toolkit (Teil 4): Entwicklung einer EX5-Bibliothek zur Verwaltung der Handelsgeschichte
Lernen Sie, wie Sie geschlossene Positionen, Aufträge und Deals mit MQL5 abrufen, verarbeiten, klassifizieren, sortieren, analysieren und verwalten können, indem Sie in einer detaillierten Schritt-für-Schritt-Anleitung eine umfangreiche History Management EX5 Library erstellen.

Klassische Strategien neu interpretieren (Teil 12): EURUSD Ausbruchsstrategie
Begleiten Sie uns heute, wenn wir uns der Herausforderung stellen, eine profitable Ausbruchs-Handelsstrategie in MQL5 zu entwickeln. Wir haben das Währungspaar EURUSD ausgewählt und versucht, Kursausbrüche auf dem stündlichen Zeitrahmen zu handeln. Unser System hatte Schwierigkeiten, zwischen falschen Ausbrüchen und dem Beginn eines echten Trends zu unterscheiden. Wir haben unser System mit Filtern überlagert, die unsere Verluste minimieren und gleichzeitig unsere Gewinne erhöhen sollen. Am Ende haben wir unser System erfolgreich profitabel und weniger anfällig für falsche Ausbrüche gemacht.

Risikomodell für ein Portfolio unter Verwendung des Kelly-Kriteriums und der Monte-Carlo-Simulation
Seit Jahrzehnten verwenden Händler die Formel des Kelly-Kriteriums, um den optimalen Anteil des Kapitals für eine Investition oder eine Wette zu bestimmen, um das langfristige Wachstum zu maximieren und gleichzeitig das Risiko des Ruins zu minimieren. Das blinde Befolgen des Kelly-Kriteriums auf der Grundlage der Ergebnisse eines einzigen Backtests ist jedoch für einzelne Händler oft gefährlich, da beim Live-Handel der Handelsvorsprung im Laufe der Zeit abnimmt und die vergangene Leistung keine Vorhersage für das zukünftige Ergebnis ist. In diesem Artikel werde ich einen realistischen Ansatz für die Anwendung des Kelly-Kriteriums für die Risikoallokation eines oder mehrerer EAs in MetaTrader 5 vorstellen und dabei die Ergebnisse der Monte-Carlo-Simulation von Python einbeziehen.

Handel mit dem MQL5 Wirtschaftskalender (Teil 5): Verbessern des Dashboards mit reaktionsschnellen Steuerelementen und Filterschaltflächen
In diesem Artikel erstellen wir Schaltflächen für die Filter von Währungspaar, Wichtigkeitsstufen, Zeitspannen und eine Abbruchoption, um die Kontrolle über das Dashboard zu verbessern. Diese Tasten sind so programmiert, dass sie dynamisch auf Nutzeraktionen reagieren und eine nahtlose Interaktion ermöglichen. Außerdem automatisieren wir ihr Verhalten, um Änderungen in Echtzeit auf dem Dashboard anzuzeigen. Dies verbessert die allgemeine Funktionsweise, Mobilität und Reaktionsfähigkeit des Panels.

Integration von MQL5 mit Datenverarbeitungspaketen (Teil 4): Umgang mit großen Daten
Dieser Teil befasst sich mit fortgeschrittenen Techniken zur Integration von MQL5 mit leistungsstarken Datenverarbeitungswerkzeugen und konzentriert sich auf den effizienten Umgang mit Big Data zur Verbesserung der Handelsanalyse und Entscheidungsfindung.

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien
CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht. In diesem Artikel werden wir das Verfahren zur Verwendung eines trainierten CatBoost-Modells als Filter für eine klassische Trendfolgestrategie mit gleitendem Durchschnitt erläutern. Dieser Artikel soll einen Einblick in den Strategieentwicklungsprozess geben und gleichzeitig auf die Herausforderungen eingehen, denen man sich auf diesem Weg stellen kann. Ich werde meinen Arbeitsablauf vorstellen, bei dem ich Daten von MetaTrader 5 abrufe, ein maschinelles Lernmodell in Python trainiere und zurück in MetaTrader 5 Expert Advisors integriere. Am Ende dieses Artikels werden wir die Strategie durch statistische Tests validieren und zukünftige Bestrebungen erörtern, die über den derzeitigen Ansatz hinausgehen.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VIII): Das Analytics Panel
Heute befassen wir uns mit dem Einbinden nützlicher Handelsmetriken in ein spezielles Fenster, das in den Admin Panel EA integriert ist. Diese Diskussion konzentriert sich auf die Implementierung von MQL5 zur Entwicklung des „Analytics Panel“ und hebt den Wert der Daten hervor, die es den Handelsadministratoren liefert. Die Auswirkungen sind weitgehend lehrreich, da aus dem Entwicklungsprozess wertvolle Lehren gezogen werden, von denen sowohl angehende als auch erfahrene Entwickler profitieren. Diese Funktion zeigt die grenzenlosen Möglichkeiten, die diese Entwicklungsreihe für die Ausstattung von Handelsmanagern mit fortschrittlichen Softwaretools bietet. Darüber hinaus werden wir die Implementierung der Klassen PieChart und ChartCanvas als Teil der kontinuierlichen Erweiterung der Funktionen des Trading Administrator-Panels untersuchen.

Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard
Dieser Artikel erweitert unser Wirtschaftskalender-Dashboard durch die Implementierung von Echtzeit-Nachrichten-Updates, um Marktinformationen aktuell und umsetzbar zu halten. Wir integrieren Techniken zum Abrufen von Live-Daten in MQL5, um Ereignisse auf dem Dashboard kontinuierlich zu aktualisieren und die Reaktionsfähigkeit der Schnittstelle zu verbessern. Dieses Update stellt sicher, dass wir direkt über das Dashboard auf die neuesten Wirtschaftsnachrichten zugreifen können, um unsere Handelsentscheidungen auf der Grundlage der aktuellsten Daten zu optimieren.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator
Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.

Meistern der Log-Einträge (Teil 1): Grundlegende Konzepte und erste Schritte in MQL5
Willkommen zum Beginn einer neuen Reise! Dieser Artikel eröffnet eine spezielle Serie, in der wir Schritt für Schritt eine Bibliothek für die Logmanipulation erstellen, die auf diejenigen zugeschnitten ist, die in der Sprache MQL5 entwickeln.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 3): Analytics Master — EA
Der Übergang von einem einfachen Handelsskript zu einem voll funktionsfähigen Expert Advisor (EA) kann Ihre Handelserfahrung erheblich verbessern. Stellen Sie sich vor, Sie hätten ein System, das Ihre Charts automatisch überwacht, wichtige Berechnungen im Hintergrund durchführt und regelmäßig alle zwei Stunden Updates liefert. Dieser EA ist in der Lage, die wichtigsten Kennzahlen zu analysieren, die für fundierte Handelsentscheidungen wichtig sind, und stellt sicher, dass Sie Zugang zu den aktuellsten Informationen haben, um Ihre Strategien effektiv anzupassen.

Automatisieren von Handelsstrategien in MQL5 (Teil 1): Das Profitunity System (Trading Chaos von Bill Williams)
In diesem Artikel untersuchen wir das Profitunity System von Bill Williams, indem wir seine Kernkomponenten und seinen einzigartigen Ansatz für den Handel im Marktchaos aufschlüsseln. Wir führen die Leser durch die Implementierung des Systems in MQL5 und konzentrieren uns dabei auf die Automatisierung von Schlüsselindikatoren und Einstiegs-/Ausstiegssignalen. Schließlich testen und optimieren wir die Strategie und geben Einblicke in ihre Leistung in verschiedenen Marktszenarien.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik
Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.

Connexus Observer (Teil 8): Hinzufügen eines Request Observer
In diesem letzten Teil unserer Connexus-Bibliotheksreihe haben wir uns mit der Implementierung des Observer-Patterns sowie mit wesentlichen Refactorings von Dateipfaden und Methodennamen beschäftigt. Diese Serie umfasst die gesamte Entwicklung von Connexus, das die HTTP-Kommunikation in komplexen Anwendungen vereinfachen soll.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 2): Ein Script für analytische Kommentare
Im Einklang mit unserer Vision, das Preisgeschehen zu vereinfachen, freuen wir uns, Ihnen ein weiteres Tool vorstellen zu können, das Ihre Marktanalyse erheblich verbessern und Ihnen helfen kann, gut informierte Entscheidungen zu treffen. Dieses Tool zeigt wichtige technische Indikatoren an, wie z. B. die Kurse des Vortags, wichtige Unterstützungs- und Widerstandsniveaus und das Handelsvolumen, und generiert automatisch visuelle Hinweise auf dem Chart.

Datenwissenschaft und ML (Teil 32): KI-Modelle auf dem neuesten Stand halten, Online-Lernen
In der sich ständig verändernden Welt des Handels ist die Anpassung an Marktveränderungen nicht nur eine Option, sondern eine Notwendigkeit. Täglich entstehen neue Muster und Trends, die es selbst den fortschrittlichsten Modellen für maschinelles Lernen erschweren, angesichts der sich verändernden Bedingungen effektiv zu bleiben. In diesem Artikel erfahren Sie, wie Sie Ihre Modelle durch ein automatisches Neu-Training relevant halten und auf neue Marktdaten reagieren können.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VII): Vertrauenswürdiger Nutzer, Wiederherstellung und Kryptografie
Sicherheitsabfragen, wie die, die jedes Mal ausgelöst werden, wenn Sie den Chart aktualisieren, ein neues Paar zum Chat mit dem Admin Panel EA hinzufügen oder das Terminal neu starten, können lästig werden. In dieser Diskussion werden wir eine Funktion untersuchen und implementieren, die die Anzahl der Anmeldeversuche verfolgt, um einen vertrauenswürdigen Nutzer zu identifizieren. Nach einer bestimmten Anzahl von Fehlversuchen geht die Anwendung zu einem erweiterten Anmeldeverfahren über, das auch die Wiederherstellung des Passcodes für Nutzer erleichtert, die ihn vergessen haben. Außerdem werden wir uns damit beschäftigen, wie Kryptographie effektiv in das Admin Panel integriert werden kann, um die Sicherheit zu erhöhen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz
Temporal Difference ist ein weiterer Algorithmus des Reinforcement Learning, der Q-Werte auf der Grundlage der Differenz zwischen vorhergesagten und tatsächlichen Belohnungen während des Agententrainings aktualisiert. Sie befasst sich speziell mit der Aktualisierung von Q-Werten, ohne sich um die Verknüpfung von Zustand und Aktion zu kümmern. Daher wollen wir sehen, wie wir dies, wie in früheren Artikeln, in einem mit einem Assistenten zusammengestellten Expert Advisor anwenden können.

Handelseinblicke durch Volumen: Mehr als OHLC-Charts
Ein algorithmisches Handelssystem, das die Volumenanalyse mit Techniken des maschinellen Lernens, insbesondere neuronalen LSTM-Netzen, kombiniert. Im Gegensatz zu traditionellen Handelsansätzen, die sich in erster Linie auf Preisbewegungen konzentrieren, legt dieses System den Schwerpunkt auf Volumenmuster und deren Ableitungen, um Marktbewegungen vorherzusagen. Die Methodik umfasst drei Hauptkomponenten: Analyse der Volumenderivate (erste und zweite Ableitung), LSTM-Vorhersagen für Volumenmuster und traditionelle technische Indikatoren.

Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen
In diesem Artikel stellen wir eine MQL5-Implementierung der schrittweisen Merkmalsauswahl vor, die auf der wechselseitigen Information zwischen einer optimalen Prädiktorenmenge und einer Zielvariablen basiert.

Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit
In diesem Artikel implementieren wir Filter in das MQL5-Wirtschaftskalender-Dashboard, um die Anzeige von Nachrichtenereignissen nach Währung, Bedeutung und Zeit zu verfeinern. Wir erstellen zunächst Filterkriterien für jede Kategorie und integrieren diese dann in das Dashboard, um nur relevante Ereignisse anzuzeigen. Schließlich stellen wir sicher, dass jeder Filter dynamisch aktualisiert wird, um Händlern gezielte wirtschaftliche Erkenntnisse in Echtzeit zu liefern.

Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Das Panel zur Handelsverwaltung (II)
In diesem Artikel erweitern wir das Trade Management Panel unseres multifunktionalen Admin Panels. Wir führen eine leistungsstarke Hilfsfunktion ein, die den Code vereinfacht und die Lesbarkeit, Wartbarkeit und Effizienz verbessert. Wir zeigen Ihnen auch, wie Sie zusätzliche Schaltflächen nahtlos integrieren und die Nutzeroberfläche erweitern können, um ein breiteres Spektrum von Handelsaufgaben zu bewältigen. Ob es um die Verwaltung von Positionen, die Anpassung von Aufträgen oder die Vereinfachung von Nutzerinteraktionen geht, dieser Leitfaden hilft Ihnen bei der Entwicklung eines robusten, nutzerfreundlichen Trade Management Panels.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 48): Bill Williams Alligator
Der Alligator-Indikator, der von Bill Williams entwickelt wurde, ist ein vielseitiger Indikator zur Trenderkennung, der klare Signale liefert und häufig mit anderen Indikatoren kombiniert wird. Die MQL5-Assistenten-Klassen und die Assemblierung ermöglichen es uns, eine Vielzahl von Signalen auf der Basis von Mustern zu testen, und so betrachten wir auch diesen Indikator.

Klassische Strategien neu interpretieren (Teil XI): Kreuzung gleitender Durchschnitte (II)
Die gleitenden Durchschnitte und der Stochastik-Oszillator können verwendet werden, um trendfolgende Handelssignale zu generieren. Diese Signale werden jedoch erst nach dem Eintreten der Preisaktion beobachtet. Diese den technischen Indikatoren innewohnende Verzögerung können wir mit Hilfe von KI wirksam überwinden. In diesem Artikel erfahren Sie, wie Sie einen vollständig autonomen KI-gesteuerten Expert Advisor erstellen, der Ihre bestehenden Handelsstrategien verbessern kann. Selbst die älteste mögliche Handelsstrategie kann verbessert werden.