
Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase
Este artículo constituye la cuarta entrega de nuestra serie sobre gestión de riesgo en MQL5, donde continuamos explorando técnicas avanzadas para proteger y optimizar nuestras estrategias de trading. Luego de haber sentado bases importantes en artículos anteriores, ahora nos centraremos en finalizar todos aquellos métodos pendientes que dejamos en la tercera parte, incluyendo funciones para verificar si se han alcanzado ciertos límites de pérdidas o ganancias. Además, presentaremos nuevos eventos clave que permiten una gestión más precisa y ágil.

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.

Métodos de William Gann (Parte II): Creación del indicador Cuadrado de Gann
Crearemos un indicador basado en el Cuadrado de Gann de 9, construido elevando al cuadrado el tiempo y el precio. Prepararemos el código y probaremos el indicador en la plataforma en diferentes intervalos de tiempo.

Gráficos del índice del dólar y del índice del euro — ejemplo de servicio en MetaTrader 5
Como ejemplo de programa de servicio, consideraremos la creación y actualización de gráficos del índice del dólar (USDX) y del índice del euro (EURX). Al lanzar el servicio, comprobaremos la disponibilidad del instrumento sintético requerido, lo crearemos en caso de que no exista y lo colocaremos en la ventana de Observación del Mercado. A continuación, se creará la historia del instrumento sintético, de minutos y ticks, y se abrirá el gráfico del instrumento creado.

Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.

Del básico al intermedio: Array (IV)
En este artículo, veremos cómo podemos hacer algo muy parecido a lo que se encuentra en lenguajes como C, C++ y Java. Se trata de enviar un número casi infinito de parámetros dentro de una función o procedimiento. Aunque, aparentemente, se trate de un tema avanzado. En mi opinión, lo que se verá aquí puede ser implementado con facilidad por cualquier persona que haya comprendido los conceptos anteriores. Siempre y cuando se hayan comprendido los conceptos vistos anteriormente. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.

Del básico al intermedio: Array (III)
En este artículo, veremos cómo trabajar con arrays en MQL5, hasta el punto de transferir información entre funciones y procedimientos mediante arrays. El objetivo es prepararte para lo que se verá y explicará en artículos futuros. No obstante, es extremadamente recomendable que estudies muy bien lo que se mostrará en este artículo.

Del básico al intermedio: Array (II)
En este artículo, veremos qué es un array dinámico y un array estático. ¿Existe diferencia entre usar uno u otro? ¿O ambos son siempre lo mismo? ¿Cuándo debo usar uno y cuándo usar el otro? ¿Y los arrays constantes? ¿Por qué existen y cuál es el riesgo que corro, cuando no inicializo todos los valores de un array? Suponiendo que serán iguales a cero. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse como una aplicación final, si el objetivo no es el estudio de los conceptos mostrados aquí.

Formulación de un Asesor Experto Multipar Dinámico (Parte 1): Correlación de divisas y correlación inversa
El asesor experto dinámico de múltiples pares aprovecha las estrategias de correlación y correlación inversa para optimizar el rendimiento comercial. Al analizar datos del mercado en tiempo real, identifica y explota la relación entre pares de divisas.

Reimaginando las estrategias clásicas (Parte VII): Análisis de los mercados Forex y la deuda soberana en el USDJPY
En el artículo de hoy analizaremos la relación entre los tipos de cambio futuros y los bonos gubernamentales. Los bonos se encuentran entre las formas más populares de valores de renta fija y serán el foco de nuestro debate. Únase a nosotros mientras exploramos si podemos mejorar una estrategia clásica utilizando IA.

Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería
Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.

Obtenga una ventaja sobre cualquier mercado (Parte III): Índice de gasto de Visa
En el mundo de los macrodatos, hay millones de conjuntos de datos alternativos que pueden mejorar nuestras estrategias de negociación. En esta serie de artículos le ayudaremos a identificar los conjuntos de datos públicos más informativos.

Analizamos ejemplos de estrategias comerciales en el terminal de cliente
En este artículo, utilizaremos esquemas de bloques para analizar visualmente la lógica de los asesores de entrenamiento adjuntos al terminal, ubicados en la carpeta Experts\Free Robots, que negocian con patrones de velas.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos
En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.

Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo
En este artículo daremos inicio a la creación de la clase principal de gestión de riesgo, la cual será fundamental para administrar el riesgo en el sistema. Nos enfocaremos en construir las bases, definiendo estructuras, variables y funciones esenciales. Además, implementaremos los métodos necesarios para asignar valores a las pérdidas y ganancias máximas, estableciendo así los cimientos de esta gestión.

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.

Aprendiendo MQL5 de principiante a profesional (Parte IV): Sobre arrays, funciones y variables globales del terminal
El artículo es una continuación de la serie para principiantes. En él proporcionamos información detallada sobre los arrays de datos y la interacción de datos y funciones, así como de las variables globales del terminal que permiten el intercambio de datos entre diferentes programas MQL5.

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5
En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.

Monitoreo de transacciones usando notificaciones push: ejemplo de un servicio en MetaTrader 5
En este artículo veremos cómo crear un programa de servicio para enviar notificaciones a un smartphone sobre los resultados comerciales. Asimismo, aprenderemos cómo trabajar con listas de objetos de la biblioteca estándar para organizar una muestra de objetos según las propiedades requeridas.

Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases
Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.

Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.
En esta serie de artículos, analizamos estrategias de trading clásicas utilizando algoritmos modernos para determinar si podemos mejorar la estrategia utilizando IA. En el artículo de hoy, retomamos un enfoque clásico para operar con el SP500 utilizando la relación que guarda con los bonos del Tesoro estadounidense.

Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)
En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)
En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.

Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA
Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.

Desarrollo de un sistema de repetición (Parte 74): Un nuevo Chart Trade (I)
En este artículo, modificaremos el último código visto en esta secuencia sobre Chart Trade. Estos cambios son necesarios para adaptar el código al modelo actual del sistema de repetición/simulador. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe considerarse una aplicación destinada a otros fines que no sean el aprendizaje y el estudio de los conceptos mostrados.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas
Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.

Gestión de Riesgo (Parte 2): Implementando el Cálculo de Lotes en una Interfaz Gráfica
En este artículo exploraremos cómo mejorar y aplicar de manera más efectiva los conceptos abordados en el artículo anterior, utilizando las poderosas librerías de controles gráficos de MQL5. Te guiaré paso a paso en la creación de una interfaz gráfica completamente funcional, explicando el plan de diseño detrás de ella, así como el propósito y funcionamiento de cada método empleado. Además, al final del artículo, pondremos a prueba el panel que desarrollaremos, asegurándonos de que funcione correctamente y cumpla con los objetivos planteados.

Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes
En esta serie de artículos, analizaremos empíricamente las estrategias comerciales clásicas para ver si podemos mejorarlas utilizando IA. En la discusión de hoy, intentamos predecir máximos más altos y mínimos más bajos utilizando el modelo de análisis discriminante lineal.

Gestión de Riesgo (Parte 1): Fundamentos para Construir una Clase de Gestión de Riesgo
En este artículo exploraremos los fundamentos de la gestión de riesgo en el trading, y aprenderemos a crear nuestras primeras funciones para obtener el lote adecuado para una operación y el stop loss. Además, profundizaremos en cómo funcionan estas funciones, explicando cada paso detalladamente. Nuestro objetivo es proporcionar una comprensión clara de cómo aplicar estos conceptos en el trading automatizado. Al final, pondremos todo en práctica creando un script simple con el archivo de inclusión que hemos diseñado.

Kit de herramientas de negociación MQL5 (Parte 2): Ampliación e implantación de la biblioteca EX5 de gestión de posiciones
Aprenda a importar y utilizar bibliotecas EX5 en su código o proyectos MQL5. En este artículo de continuación, ampliaremos la biblioteca EX5 agregando más funciones de gestión de posiciones a la biblioteca existente y creando dos Asesores Expertos. El primer ejemplo utilizará el indicador técnico de promedio dinámico de índice variable para desarrollar un asesor experto en estrategia comercial de trailing stop, mientras que el segundo ejemplo utilizará un panel comercial para monitorear, abrir, cerrar y modificar posiciones. Estos dos ejemplos demostrarán cómo utilizar e implementar la biblioteca de gestión de posiciones EX5 actualizada.

Análisis causal de series temporales mediante entropía de transferencia
En este artículo, analizamos cómo se puede aplicar la causalidad estadística para identificar variables predictivas. Exploraremos el vínculo entre causalidad y entropía de transferencia, además de presentar código MQL5 para detectar transferencias direccionales de información entre dos variables.

Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller
Este artículo presenta una fascinante inmersión en el mundo del comportamiento social de los organismos vivos y su influencia en la creación de un nuevo modelo matemático, el ASBO (Adaptive Social Behavior Optimisation). Hoy exploraremos cómo los principios de liderazgo, vecindad y cooperación observados en las sociedades de seres vivos inspiran el desarrollo de algoritmos de optimización innovadores.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python
En este artículo, vamos a discutir cómo podemos construir Asesores Expertos capaces de seleccionar de forma autónoma y cambiar las estrategias de negociación en función de las condiciones imperantes en el mercado. Aprenderemos sobre las cadenas de Markov y cómo pueden sernos útiles como operadores algorítmicos.

Reimaginando las estrategias clásicas (Parte II): Ruptura de las Bandas de Bollinger
Este artículo explora una estrategia comercial que integra el análisis discriminante lineal (Linear Discriminant Analysis, LDA) con las Bandas de Bollinger, aprovechando las predicciones de zonas categóricas para obtener señales estratégicas de entrada al mercado.

Del básico al intermedio: Array (I)
Este artículo constituye una transición entre lo que se ha visto hasta ahora y una nueva etapa de estudios. Para comprender este artículo es necesario haber leído los artículos anteriores. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.

Del básico al intermedio: Arrays y cadenas (III)
En este artículo veremos dos aspectos. El primero es cómo la biblioteca estándar puede transformar valores binarios en otras formas de representación, como el sistema octal, el sistema decimal y el sistema hexadecimal. El segundo versará sobre cómo podríamos definir el ancho de nuestra contraseña basándonos en una frase secreta, con el conocimiento mostrado hasta ahora. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.

Del básico al intermedio: Arrays y cadenas (II)
En este artículo, demostraré que, aunque aún estamos en una fase inicial y muy básica, ya podemos implementar alguna aplicación interesante. En este caso, crearemos un generador de contraseñas bastante sencillo. Así podremos aplicar algunos de los conceptos explicados hasta ahora. Además, mostraré cómo se pueden desarrollar soluciones para algunos problemas específicos.

Del básico al intermedio: Arrays y cadenas (I)
En este artículo, empezaremos a explorar algunos tipos especiales de datos. Empezaremos definiendo qué es una cadena de texto (string) y explicando cómo utilizar algunos procedimientos básicos. Esto nos permitirá trabajar con este tipo de dato, que puede resultar curioso, aunque en ciertos momentos puede resultar un poco confuso para principiantes. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.

Del básico al intermedio: Precedencia de operadores
Se trata, sin duda, del tema más complicado de explicar únicamente con la parte teórica. Por esta razón, te aconsejo que practiques lo que se mostrará aquí. Aunque al principio todo parezca simple, esta cuestión sobre los operadores solo se comprenderá bien con la práctica aliada a un estudio constante. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.