
交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。

使用MQL5和Python构建自优化EA(第三部分):破解Boom 1000算法
在本系列文章中,我们探讨了如何构建能够自主适应动态市场条件的EA。今天的文章中,我们将尝试调整一个深度神经网络以适应Deriv的合成市场。

细菌趋化优化(BCO)
本文介绍了细菌趋化优化(Bacterial Chemotaxis Optimization,简称 BCO)算法的原始版本及其改进版本。我们将详细探讨所有不同之处,特别关注 BCOm 的新版本,该版本简化了细菌的移动机制,减少了对位置历史的依赖,并且使用了比原始版本计算量更小的数学方法。我们还将进行测试并总结结果。

从基础到中级:操作符
在本文中,我们将介绍主要的操作符。虽然这个主题很容易理解,但在代码格式中包含数学表达式时,有一些要点非常重要。如果不充分了解这些细节,经验很少或没有经验的程序员最终会放弃尝试创建自己的解决方案。

在 MQL5 中重新构想经典策略(第二部分):富时 100 指数(FTSE100)与英国国债(UK Gilts)
在本系列文章中,我们探索了流行的交易策略,并尝试使用人工智能(AI)对其进行改进。在今天的文章中,我们将重新审视基于股市与债市之间关系的经典交易策略。

重思经典策略(第八部分):基于美元兑加元(USDCAD)探讨外汇市场与贵金属
在本系列文章中,我们将重新审视一些广为人知的交易策略,看看是否能够利用人工智能(AI)来改进它们。请加入我们今天的讨论,一起测试贵金属与货币之间是否存在可靠的关系。

您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化
批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。

关于因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在市场事件预测中的应用实例
本文提供了一个使用因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在MQL5中实现复杂交易系统的全面指南。文章涵盖了这些方法的理论背景,详细解释了交易算法中的关键函数,并提供了实现的示例代码。

重构经典策略(第七部分):基于USDJPY的外汇市场与主权债务分析
在今天的文章中,我们将分析汇率走势与政府债券之间的关系。债券是固定收益证券中最受欢迎的形式之一,将成为我们讨论的重点。加入我们,一起探索是否可以利用人工智能技术改进一种经典策略。

开发回放系统(第 60 部分):玩转服务(一)
很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。

禁忌搜索(TS)
本文讨论了禁忌搜索(Tabu Search)算法,这是一种最早且最为人所知的元启发式方法之一。我们将详细探讨该算法的运行过程,从选择初始解并探索邻近选项开始,重点介绍使用禁忌表。文章涵盖了该算法的关键方面及其特性。

将您自己的 LLM 集成到 EA 中(第 4 部分):使用 GPU 训练自己的 LLM
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货
众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法
在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。

纳什博弈论与隐马尔可夫滤模型在交易中的应用
这篇文章深入探讨了约翰·纳什的博弈论,特别是纳什均衡,在交易中的应用。文章讨论了交易者如何利用Python脚本和MetaTrader 5,依据纳什的原则来识别并利用市场的无效性。文章还提供了实施这些策略的逐步指南,包括使用隐马尔可夫模型(HMM)和统计分析,以提升交易表现。

数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具
探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。

在 MQL5 中创建交易管理员面板(第一部分):构建消息接口
本文讨论了为 MetaTrader 5 创建一个消息接口,旨在帮助系统管理员在平台内直接与其他交易者进行沟通。MQL5 最近与社交平台的整合使得信号能够通过不同渠道快速广播。想象一下,只需点击“是”或“否”就能确认发送信号。继续阅读以了解更多信息。

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP
我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。

MetaTrader 中的 Multibot(第二部分):改进的动态模板
在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。

您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN
学习率是许多机器学习算法在训练过程期间,朝向训练目标迈进的步长。我们检验了其众多调度和格式对于生成式对抗网络性能的影响,该神经网络类型我们在早前文章中已检验过。

人工藻类算法(Artificial Algae Algorithm,AAA)
文章探讨了基于藻类微生物特征的人工藻类算法(AAA)。该算法包括螺旋运动、进化过程和适应性,使其能够解决优化问题。本文深入分析了AAA的工作原理及其在数学建模中的潜力,强调了自然与算法解决方案之间的联系。

数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量
在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。

重塑经典策略(第六部分):多时间框架分析
在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。

数据科学和机器学习(第 27 部分):MetaTrader 5 中训练卷积神经网络(CNN)交易机器人 — 值得吗?
卷积神经网络(CNN)以其在检测图像和视频形态方面的出色能力而闻名,其应用涵盖众多领域。在本文中,我们探讨了 CNN 在金融市场中识别有价值形态,并为 MetaTrader 5 交易机器人生成有效交易信号的潜力。我们来发现这种深度机器学习技术如何能撬动更聪明的交易决策。

数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络
在上一篇文章中,我们讨论了一个简单的 RNN,尽管它对理解数据中的长期依赖关系无能为力,却仍能制定可盈利策略。在本文中,我们将讨论长-短期记忆(LSTM)、门控递归单元(GRU)。引入这两个是为了克服简单 RNN 的缺点,并令其更聪慧。

威廉·江恩(William Gann)方法(第二部分):创建江恩宫格指标
我们将基于“江恩九宫格”创建一个指标,该指标通过时间和价格方格构建而成。我们将提供指标代码,并在平台上针对不同的时间区间,对该指标进行测试。

使用 SMA 和 EMA 自动优化止盈和指标参数的示例
本文介绍了一种用于外汇交易的复杂 EA 交易,它能够将机器学习与技术分析相结合。它专注于交易苹果股票,具有自适应优化、风险管理和多策略的特点。回溯测试显示出良好的结果,盈利能力较高,但也有显著的回撤,表明还有进一步改进的潜力。

创建 MQL5-Telegram 集成 EA 交易 (第二部分):从 MQL5 发送信号到 Telegram
在本文中,我们创建了一个 MQL5-Telegram 集成 EA 交易,将移动平均线交叉信号发送到 Telegram。我们详细介绍了从移动平均线交叉生成交易信号的过程,在 MQL5 中实现必要的代码,并确保集成无缝工作。结果是系统可以直接向您的 Telegram 群聊提供实时交易提醒。

重构经典策略(第五部分):基于USDZAR的多品种分析
在本系列文章中,我们重新审视经典策略,看看是否可以使用人工智能来改进这些策略。在今天的文章中,我们将研究一种使用一篮子具有相关性的金融产品来进行多品种分析的流行策略,我们将重点关注货币对 USDZAR。

重塑经典策略(第四部分):标普500指数与美国国债
在本系列文章中,我们使用现代算法分析经典交易策略,以确定是否可以利用人工智能改进这些策略。在今天的文章中,我们将重新审视一种利用标普500指数与美国国债之间关系的经典交易方法。

交易中的神经网络:时空神经网络(STNN)
在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。