MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
preview
Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

Deus EAの実装:MQL5におけるRSIと移動平均を使った自動売買

この記事では、RSIと移動平均指標に基づいて自動売買をおこなうDeus EAの実装手順を概説します。
preview
PythonとMQL5を使用した取引戦略の自動パラメータ最適化

PythonとMQL5を使用した取引戦略の自動パラメータ最適化

取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
preview
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
preview
制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)

この記事では、MetaTrader 5端末の設定タブでCustom Maxを選択する際に、複数の目的と制約条件を持つ最適化問題を実装する方法を紹介します。最適化問題の例は、ドローダウンが10%未満、連敗回数が5回未満、1週間の取引回数が5回以上となるように、プロフィットファクター、ネットプロフィット、リカバリーファクターを最大化するといったものです。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)

今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
preview
知っておくべきMQL5ウィザードのテクニック(第24回):移動平均

知っておくべきMQL5ウィザードのテクニック(第24回):移動平均

移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)

本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
preview
知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き

知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き

エキスパートアドバイザー(EA)のパフォーマンスに対する学習率の感度を、主に適応学習率を調べることでまとめます。これらの学習率は、訓練の過程で層の各パラメータごとにカスタマイズすることを目的としており、潜在的な利点と期待されるパフォーマンスの差を評価します。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。
preview
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
preview
ニューラルネットワークが簡単に(第85回):多変量時系列予測

ニューラルネットワークが簡単に(第85回):多変量時系列予測

この記事では、線形モデルとTransformerの長所を調和的に組み合わせた、新しい複雑な時系列予測手法を紹介します。
preview
どんな市場でも優位性を得る方法(第3回):VISA消費指数

どんな市場でも優位性を得る方法(第3回):VISA消費指数

ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。
preview
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
preview
多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信

MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信

この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。
preview
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
preview
多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。
preview
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

ガウス過程カーネルは正規分布の共分散関数であり、予測において役割を果たす可能性があります。MQL5のカスタムシグナルクラスで、このユニークなアルゴリズムを探求し、プライムエントリシグナルやエグジットシグナルとして活用できるかを検証しました。
preview
ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

この記事では、2024年1月に導入された、グラフ制約のある建築レイアウト生成の複雑な問題を解くためのGTGAN (Graph Transformer Generative Adversarial Model)アルゴリズムについて知ろうと思います。
preview
MetaTraderのMultibot(第2回):動的テンプレートの改良

MetaTraderのMultibot(第2回):動的テンプレートの改良

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
preview
古典的な戦略を再構築する(第6回):多時間枠分析

古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
preview
古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

この連載では、古典的な戦略を再検討し、AIを使って戦略を改善できるかどうかを検証します。今日の記事では、複数の相関する証券をまとめて分析するという一般的な戦略について検討し、エキゾチックな通貨ペアであるUSDZAR(米ドル/南アフリカランド)に焦点を当てます。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
preview
MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

この記事では、チャートのスクリーンショットを画像データとしてエンコードし、HTTPリクエストを通じてTelegramチャットに送信するMQL5のエキスパートアドバイザー(EA)を作成します。この画像のエンコードと送信の統合によって、既存のMQL5-Telegramシステムが強化され、Telegram上で直接視覚的な取引洞察を提供できるようになります。
preview
知っておくべきMQL5ウィザードのテクニック(第36回):マルコフ連鎖を用いたQ学習

知っておくべきMQL5ウィザードのテクニック(第36回):マルコフ連鎖を用いたQ学習

強化学習は、教師あり学習、教師なし学習と並んで、機械学習における3つの主要な考え方の1つです。そのため、最適制御、つまり目的関数に最も適した長期的な方針を学習することに関心があります。このような背景から、ウィザードが作成したEAのMLPの学習プロセスにおいて、MLPがどのような役割を果たす可能性があるのかを探ります。
preview
多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成

開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。
preview
知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。
preview
ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)

ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)

これまで検討してきたすべてのモデルは、環境の状態を時系列として分析します。ただし、時系列は周波数特徴の形式で表現することもできます。この記事では、時系列の周波数成分を使用して将来の状態を予測するアルゴリズムを紹介します。
preview
ニューラルネットワークが簡単に(第90回):時系列の周波数補間(FITS)

ニューラルネットワークが簡単に(第90回):時系列の周波数補間(FITS)

FEDformer法を研究することで、時系列表現の周波数領域への扉を開きました。この新しい記事では、私たちが始めたトピックを続けます。分析をおこなうだけでなく、特定の分野におけるその後の状態を予測することができる手法について考えてみたいと思います。
preview
確率最適化と最適制御の例

確率最適化と最適制御の例

SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。
preview
MQL5入門(第9回):MQL5のオブジェクトの理解と使用

MQL5入門(第9回):MQL5のオブジェクトの理解と使用

現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。