Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 56): Nuklearnorm als Antrieb für die Erkundung nutzen

Neuronale Netze leicht gemacht (Teil 56): Nuklearnorm als Antrieb für die Erkundung nutzen

Die Untersuchung der Umgebung beim Verstärkungslernen ist ein dringendes Problem. Wir haben uns bereits mit einigen Ansätzen beschäftigt. In diesem Artikel werden wir uns eine weitere Methode ansehen, die auf der Maximierung der Nuklearnorm beruht. Es ermöglicht den Agenten, Umgebungszustände mit einem hohen Maß an Neuartigkeit und Vielfalt zu erkennen.
preview
Entwicklung eines Qualitätsfaktors für Expert Advisors

Entwicklung eines Qualitätsfaktors für Expert Advisors

In diesem Artikel sehen wir uns an, wie Sie eine Qualitätsbewertung entwickeln, die Ihr Expert Advisor im Strategietester anzeigen kann. Wir werden uns zwei bekannte Berechnungsmethoden ansehen – Van Tharp und Sunny Harris.
preview
MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

Die von Joseph Fourier eingeführte Fourier-Transformation ist ein Mittel zur Zerlegung komplexer Wellen aus Datenpunkten in einfache Teilwellen. Diese Funktion könnte für Händler sehr nützlich sein, und dieser Artikel wirft einen Blick darauf.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Neuronale Netze leicht gemacht (Teil 66): Explorationsprobleme beim Offline-Lernen

Neuronale Netze leicht gemacht (Teil 66): Explorationsprobleme beim Offline-Lernen

Modelle werden offline mit Daten aus einem vorbereiteten Trainingsdatensatz trainiert. Dies bietet zwar gewisse Vorteile, hat aber den Nachteil, dass die Informationen über die Umgebung stark auf die Größe des Trainingsdatensatzes komprimiert werden. Das wiederum schränkt die Möglichkeiten der Erkundung ein. In diesem Artikel wird eine Methode vorgestellt, die es ermöglicht, einen Trainingsdatensatz mit möglichst unterschiedlichen Daten zu füllen.
preview
Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil I): Erzeugungsmuster

Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil I): Erzeugungsmuster

Es gibt Methoden, mit denen sich viele Probleme lösen lassen, die sich ständig wiederholen. Wenn Sie einmal verstanden haben, wie man diese Methoden anwendet, kann es sehr hilfreich sein, Ihre Software effektiv zu erstellen und das Konzept von DRY (Do not Repeat Yourself) anzuwenden. In diesem Zusammenhang eignet sich das Thema Entwurfsmuster sehr gut, da es sich um Muster handelt, die Lösungen für gut beschriebene und wiederkehrende Probleme bieten.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5 (Teil I): Bewegliche GUsI (I)

Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5 (Teil I): Bewegliche GUsI (I)

Entfesseln Sie die Macht der dynamischen Datendarstellung in Ihren Handelsstrategien oder Dienstprogrammen mit unserem umfassenden Leitfaden zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in das Kernkonzept von Chartereignissen und lernen Sie, wie Sie einfache und mehrfach bewegliche GUI auf demselben Chart entwerfen und implementieren. Dieser Artikel befasst sich auch mit dem Hinzufügen von Elementen zu Ihrer grafischen Nutzeroberfläche, um deren Funktionsweise und Ästhetik zu verbessern.
preview
Verwendung des JSON Data APIs in Ihren MQL-Projekten

Verwendung des JSON Data APIs in Ihren MQL-Projekten

Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die ​API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.
preview
Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

In diesem Artikel werde ich Strategien für binäre Optionen in MetaTrader 5 überprüfen und optimieren.
preview
Advanced Variables and Data Types in MQL5

Advanced Variables and Data Types in MQL5

Variables and data types are very important topics not only in MQL5 programming but also in any programming language. MQL5 variables and data types can be categorized as simple and advanced ones. In this article, we will identify and learn about advanced ones because we already mentioned simple ones in a previous article.
preview
Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

In diesem Artikel werfen wir einen Blick auf einen weiteren Ansatz des Reinforcement Learning. Es wird als Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) bezeichnet. Bei diesem Ansatz wird ein Agent darauf trainiert, verschiedene Ziele in bestimmten Szenarien zu erreichen.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 9): Ein konzeptioneller Sprung (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 9): Ein konzeptioneller Sprung (II)

In diesem Artikel platzieren wir einen Handelschart in einem schwebenden Fenster. Im vorherigen Teil haben wir ein Basissystem erstellt, das die Verwendung von Vorlagen innerhalb eines schwebenden Fensters ermöglicht.
preview
Die Kreuzvalidierung und die Grundlagen der kausalen Inferenz in CatBoost-Modellen, Export ins ONNX-Format

Die Kreuzvalidierung und die Grundlagen der kausalen Inferenz in CatBoost-Modellen, Export ins ONNX-Format

In dem Artikel wird eine Methode zur Erstellung von Bots durch maschinelles Lernen vorgeschlagen.
preview
Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen

Neuronale Netze leicht gemacht (Teil 22): Unüberwachtes Lernen von rekurrenten Modellen

Wir untersuchen weiterhin Modelle und Algorithmen für unüberwachtes Lernen. Diesmal schlage ich vor, dass wir die Eigenschaften von AutoAutoencodern bei der Anwendung auf das Training rekurrenter Modelle diskutieren.
preview
Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Der Artikel liefert ein Beispiel für die Verwendung eines Perzeptrons als autarkes Preisprognoseinstrument, indem er allgemeine Konzepte und den einfachsten vorgefertigten Expert Advisor vorstellt und anschließend die Ergebnisse seiner Optimierung zeigt.
preview
Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle

Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle

Der Artikel beschreibt hierarchische Trainingsmodelle, die einen effektiven Ansatz für die Lösung komplexer maschineller Lernprobleme bieten. Hierarchische Modelle bestehen aus mehreren Ebenen, von denen jede für verschiedene Aspekte der Aufgabe zuständig ist.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 27): Gleitende Durchschnitte und der Anstellwinkel (Angle of Attack)

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 27): Gleitende Durchschnitte und der Anstellwinkel (Angle of Attack)

Der Anstellwinkel oder engl. „Angle of Attack“ ist eine oft zitierte Kennzahl, deren Steilheit stark mit der Stärke eines vorherrschenden Trends korreliert. Wir sehen uns an, wie es allgemein verwendet und verstanden wird, und untersuchen, ob es Änderungen gibt, die in der Art und Weise, wie es gemessen wird, zum Nutzen eines Handelssystems, das es verwendet, eingeführt werden könnten.
preview
Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Die Qualität der Vorhersage zukünftiger Zustände spielt eine wichtige Rolle bei der Methode des Goal-Conditioned Predictive Coding, die wir im vorherigen Artikel besprochen haben. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, der die Vorhersagequalität in stochastischen Umgebungen, wie z. B. den Finanzmärkten, erheblich verbessern kann.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 26): Gleitende Durchschnitte und der Hurst-Exponent

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 26): Gleitende Durchschnitte und der Hurst-Exponent

Der Hurst-Exponent ist ein Maß dafür, wie stark eine Zeitreihe auf lange Sicht autokorreliert. Es wird davon ausgegangen, dass sie die langfristigen Eigenschaften einer Zeitreihe erfasst und daher in der Zeitreihenanalyse auch außerhalb von wirtschaftlichen/finanziellen Zeitreihen eine gewisse Bedeutung hat. Wir konzentrieren uns jedoch auf den potenziellen Nutzen für Händler, indem wir untersuchen, wie diese Metrik mit gleitenden Durchschnitten gepaart werden kann, um ein potenziell robustes Signal zu bilden.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 11): System von Kreuzaufträgen

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 11): System von Kreuzaufträgen

In diesem Artikel werden wir ein System von Kreuzaufträgen (cross order system) erstellen. Es gibt eine Art von Vermögenswerten, die den Händlern das Leben sehr schwer macht - Terminkontrakte. Aber warum machen sie einem das Leben schwer?
preview
Einführung in MQL5 (Teil 7): Anleitung für Anfänger zur Erstellung von Expert Advisors und zur Verwendung von AI-generiertem Code in MQL5

Einführung in MQL5 (Teil 7): Anleitung für Anfänger zur Erstellung von Expert Advisors und zur Verwendung von AI-generiertem Code in MQL5

Entdecken Sie die ultimative Anleitung für Anfänger zum Erstellen von Expert Advisors (EAs) mit MQL5 in unserem umfassenden Artikel. Lernen Sie Schritt für Schritt, wie Sie EAs mithilfe von Pseudocode konstruieren und die Leistung von KI-generiertem Code nutzen können. Egal, ob Sie neu im algorithmischen Handel sind oder Ihre Fähigkeiten verbessern wollen, dieser Leitfaden bietet einen klaren Weg zur Erstellung effektiver EAs.
preview
Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Dies ist ein neuer Artikel, der unsere Serie für Anfänger fortsetzt, in der es darum geht, wie man ein Handelssystem basierend auf einigen der beliebten Indikatoren entwirft. Wir werden einen neuen Indikator kennenlernen, nämlich das On Balance Volume (OBV), und wir werden lernen, wie wir ihn verwenden und ein darauf basierendes Handelssystem entwerfen können.
preview
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
preview
Kombinatorisch symmetrische Kreuzvalidierung in MQL5

Kombinatorisch symmetrische Kreuzvalidierung in MQL5

In diesem Artikel stellen wir die Implementierung der kombinatorisch symmetrischen Kreuzvalidierung in reinem MQL5 vor, um den Grad der Überanpassung nach der Optimierung einer Strategie unter Verwendung des langsamen vollständigen Algorithmus des Strategietesters zu messen.
preview
Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil II): Vorhersage technischer Indikatoren

Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil II): Vorhersage technischer Indikatoren

Wussten Sie, dass die Vorhersage bestimmter technischer Indikatoren genauer ist als die Vorhersage des zugrunde liegenden Preises eines gehandelten Symbols? Lernen Sie mit uns, wie Sie diese Erkenntnisse für bessere Handelsstrategien nutzen können.
preview
Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.
preview
Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.
preview
Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik

Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik

Im vorangegangenen Artikel haben wir die DIAYN-Methode vorgestellt, die einen Algorithmus zum Erlernen einer Vielzahl von Fertigkeiten (skills) bietet. Die erworbenen Fertigkeiten können für verschiedene Aufgaben genutzt werden. Aber solche Fertigkeiten können ziemlich unberechenbar sein, was ihre Anwendung schwierig machen kann. In diesem Artikel wird ein Algorithmus zum Erlernen vorhersehbarer Fertigkeiten vorgestellt.
preview
Neuronale Netze leicht gemacht (Teil 61): Optimismusproblem beim Offline-Verstärkungslernen

Neuronale Netze leicht gemacht (Teil 61): Optimismusproblem beim Offline-Verstärkungslernen

Während des Offline-Lernens optimieren wir die Strategie des Agenten auf der Grundlage der Trainingsdaten. Die daraus resultierende Strategie gibt dem Agenten Vertrauen in sein Handeln. Ein solcher Optimismus ist jedoch nicht immer gerechtfertigt und kann zu erhöhten Risiken während des Modellbetriebs führen. Heute werden wir uns mit einer der Methoden zur Verringerung dieser Risiken befassen.
preview
Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Das kontrastive Training ist eine unüberwachte Methode zum Training der Repräsentation. Ziel ist es, ein Modell zu trainieren, das Ähnlichkeiten und Unterschiede in Datensätzen aufzeigt. In diesem Artikel geht es um die Verwendung kontrastiver Trainingsansätze zur Erkundung verschiedener Fähigkeiten des Akteurs (Actor skills).
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Nach der Optimierung der Handelsstrategie erhalten wir eine Reihe von Parametern. Wir können sie verwenden, um mehrere Instanzen von Handelsstrategien zu erstellen, die in einem EA kombiniert werden. Früher haben wir das manuell gemacht. Hier werden wir versuchen, diesen Prozess zu automatisieren.
preview
Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Im Kontext des Verstärkungslernens kann die Prokrastination (Zögern) eines Modells mehrere Ursachen haben. Der Artikel befasst sich mit einigen der möglichen Ursachen für Prokrastination bei Modellen und mit Methoden zu deren Überwindung.
preview
Neuronale Netze leicht gemacht (Teil 60): Online Decision Transformer (ODT)

Neuronale Netze leicht gemacht (Teil 60): Online Decision Transformer (ODT)

Die letzten beiden Artikel waren der Decision-Transformer-Methode gewidmet, die Handlungssequenzen im Rahmen eines autoregressiven Modells der gewünschten Belohnungen modelliert. In diesem Artikel werden wir uns einen weiteren Optimierungsalgorithmus für diese Methode ansehen.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten von Indikatorobjekten in EAs zu erhalten.
preview
Neuronale Netze leicht gemacht (Teil 64): Die Methode konservativ gewichtetes Klonen von Verhaltensweisen (CWBC)

Neuronale Netze leicht gemacht (Teil 64): Die Methode konservativ gewichtetes Klonen von Verhaltensweisen (CWBC)

Aufgrund von Tests, die in früheren Artikeln durchgeführt wurden, kamen wir zu dem Schluss, dass die Optimalität der trainierten Strategie weitgehend von der verwendeten Trainingsmenge abhängt. In diesem Artikel werden wir uns mit einer relativ einfachen, aber effektiven Methode zur Auswahl von Trajektorien für das Training von Modellen vertraut machen.
preview
Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.
preview
Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Das Training nützlicher Fertigkeiten ohne explizite Belohnungsfunktion ist eine der größten Herausforderungen beim hierarchischen Verstärkungslernen. Zuvor haben wir bereits zwei Algorithmen zur Lösung dieses Problems kennengelernt. Die Frage nach der Vollständigkeit der Umweltforschung bleibt jedoch offen. In diesem Artikel wird ein anderer Ansatz für das Training von Fertigkeiten vorgestellt, dessen Anwendung direkt vom aktuellen Zustand des Systems abhängt.
preview
Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Da das Modell auf der Grundlage des Erfahrungswiedergabepuffers trainiert wird, entfernt sich die aktuelle Strategie oder Politik des Akteurs immer weiter von den gespeicherten Beispielen, was die Effizienz des Trainings des Modells insgesamt verringert. In diesem Artikel befassen wir uns mit einem Algorithmus zur Verbesserung der Effizienz bei der Verwendung von Stichproben in Algorithmen des verstärkten Lernens.
preview
Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

In this third part, we revisit the Simple Hedge and Simple Grid Expert Advisors (EAs) developed earlier. Our focus shifts to refining the Simple Hedge EA through mathematical analysis and a brute force approach, aiming for optimal strategy usage. This article delves deep into the mathematical optimization of the strategy, setting the stage for future exploration of coding-based optimization in later installments.