Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Mehrere Indikatoren in einem Chart (Teil 04): Weiterentwicklung zum Expert Advisor

Mehrere Indikatoren in einem Chart (Teil 04): Weiterentwicklung zum Expert Advisor

In meinen früheren Artikeln habe ich erklärt, wie man einen Indikator mit mehreren Unterfenstern erstellt, was bei der Verwendung von nutzerdefinierten Indikatoren interessant wird. Dieses Mal werden wir sehen, wie man mehrere Fenster einem Expert Advisor hinzufügen kann.
preview
Automatisierter Raster-Handel mit Stop-Pending-Aufträge an der Moscow Exchange (MOEX)

Automatisierter Raster-Handel mit Stop-Pending-Aufträge an der Moscow Exchange (MOEX)

Der Artikel befasst sich mit dem Ansatz des Raster-Handels (Grid-Trading), der auf Stop-Pending-Aufträge basiert und in einem MQL5 Expert Advisor an der Moscow Exchange (MOEX) implementiert wurde. Eine der einfachsten Strategien beim Handel am Markt ist eine Reihe von Aufträgen, die darauf abzielen, den Marktpreis zu „fangen“.
preview
Der Handel von Paaren

Der Handel von Paaren

In diesem Artikel werden wir uns mit dem Handel von Paaren befassen, d. h. mit den Grundsätzen und den Aussichten für seine praktische Anwendung. Wir werden auch versuchen, dafür eine Handelsstrategie zu entwickeln.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 11): Automatisierung (III)

Erstellen eines EA, der automatisch funktioniert (Teil 11): Automatisierung (III)

Ein automatisiertes System wird ohne angemessene Sicherheit nicht erfolgreich sein. Die Sicherheit wird jedoch nicht gewährleistet sein, wenn man bestimmte Dinge nicht richtig versteht. In diesem Artikel werden wir untersuchen, warum es so schwierig ist, ein Maximum an Sicherheit in automatisierten Systemen zu erreichen.
preview
Erfahren Sie, wie Sie ein Handelssystem durch Accumulation/Distribution (AD) entwerfen

Erfahren Sie, wie Sie ein Handelssystem durch Accumulation/Distribution (AD) entwerfen

Willkommen zu einem neuen Artikel aus unserer Serie über das Erlernen des Entwerfens von Handelssystemen auf der Grundlage der beliebtesten technischen Indikatoren. In diesem Artikel erfahren Sie mehr über einen neuen technischen Indikator, den Accumulation/Distribution Indikator, und darüber, wie Sie ein Handelssystem mit MQL5 entwerfen basierend auf einfachen AD-Handelsstrategien, um sie im MetaTrader 5 verwenden zu können.
preview
Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Der Metabar-Indikator erkennt mehr Kerzen als der herkömmliche Indikator. Prüfen wir, ob dies einen echten Nutzen für den automatisierten Handel bringt.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 16): Zugang zu Daten im Internet (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 16): Zugang zu Daten im Internet (II)

Wie man Daten aus dem Web in einen Expert Advisor überträgt, ist nicht so offensichtlich. Das ist gar nicht so einfach, wenn man nicht alle Möglichkeiten des MetaTrader 5 kennt.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 12): Automatisierung (IV)

Erstellen eines EA, der automatisch funktioniert (Teil 12): Automatisierung (IV)

Wenn Sie glauben, dass automatisierte Systeme einfach sind, dann haben Sie wahrscheinlich nicht ganz verstanden, was es braucht, um sie zu erstellen. In diesem Artikel werden wir über das Problem sprechen, das viele Expert Advisors umbringt. Das willkürliche Auslösen von schwebenden Aufträgen ist eine mögliche Lösung für dieses Problem.
preview
Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.
preview
Aufbau und Test von Keltner-Kanal-Handelssystemen

Aufbau und Test von Keltner-Kanal-Handelssystemen

In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.
preview
Neuronale Netze leicht gemacht (Teil 65): Abstandsgewichtetes überwachtes Lernen (DWSL)

Neuronale Netze leicht gemacht (Teil 65): Abstandsgewichtetes überwachtes Lernen (DWSL)

In diesem Artikel werden wir einen interessanten Algorithmus kennenlernen, der an der Schnittstelle von überwachten und verstärkenden Lernmethoden angesiedelt ist.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der mehr als nur ein Symbolpaar von dessen Symbolchart handeln kann (Aufträge öffnen, schließen und verwalten oder zum Beispiel Trailing Stop Loss und Trailing Profit). Dieses Mal werden wir nur 1 Indikator verwenden, nämlich den Triangulären gleitenden Durchschnitt in Multi-Timeframes oder Single-Timeframes.
preview
Datenwissenschaft und maschinelles Lernen (Teil 12): Können selbstlernende neuronale Netze Ihnen helfen, den Aktienmarkt zu überlisten?

Datenwissenschaft und maschinelles Lernen (Teil 12): Können selbstlernende neuronale Netze Ihnen helfen, den Aktienmarkt zu überlisten?

Sind Sie es leid, ständig zu versuchen, den Aktienmarkt vorherzusagen? Hätten Sie gerne eine Kristallkugel, die Ihnen hilft, fundiertere Investitionsentscheidungen zu treffen? Selbst trainierte neuronale Netze könnten die Lösung sein, nach der Sie schon lange gesucht haben. In diesem Artikel gehen wir der Frage nach, ob diese leistungsstarken Algorithmen Ihnen helfen können, „die Welle zu reiten“ und den Aktienmarkt zu überlisten. Durch die Analyse großer Datenmengen und die Erkennung von Mustern können selbst trainierte neuronale Netze Vorhersagen treffen, die oft genauer sind als die von menschlichen Händlern. Entdecken Sie, wie Sie diese Spitzentechnologie nutzen können, um Ihre Gewinne zu maximieren und intelligentere Investitionsentscheidungen zu treffen.
preview
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten
Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten

Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten

In diesem Artikel werde ich die Funktionalität für die Verfolgung einiger Ereignisse von Chartobjekten erstellen — Hinzufügen/Entfernen von Symbolcharts und Chart-Unterfenstern, sowie Hinzufügen/Entfernen/Ändern von Indikatoren in Chart-Fenstern.
preview
Erwartungsnutzen im Handel

Erwartungsnutzen im Handel

In diesem Artikel geht es den Erwartungsnutzen. Wir werden einige Beispiele für seine Verwendung im Handel sowie die Ergebnisse, die mit seiner Hilfe erzielt werden können, betrachten.
preview
Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Trader eine Hilfe sein können.
preview
Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Es gibt viele technische Hilfsmittel, die zur Visualisierung eines die Kurse umgebenden Kanals verwendet werden können. Eines dieser Hilfsmittel ist der Donchian Channel Indikator. In diesem Artikel erfahren Sie, wie Sie den Donchian Channel Indikator erstellen und wie Sie ihn als nutzerdefinierten Indikator mit EA handeln können.
preview
Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.
preview
Einführung in MQL5 (Teil 3): Beherrschung der Kernelemente von MQL5

Einführung in MQL5 (Teil 3): Beherrschung der Kernelemente von MQL5

Entdecken Sie die Grundlagen der MQL5-Programmierung in diesem einsteigerfreundlichen Artikel, in dem wir Arrays, nutzerdefinierte Funktionen, Präprozessoren und die Ereignisbehandlung entmystifizieren, wobei jede Codezeile verständlich erklärt wird. Erschließen wir die Leistungsfähigkeit von MQL5 mit einem einzigartigen Ansatz, der das Verständnis bei jedem Schritt sicherstellt. Dieser Artikel legt den Grundstein für die Beherrschung von MQL5, indem er die Erklärung jeder Codezeile hervorhebt und eine eindeutige und bereichernde Lernerfahrung bietet.
preview
Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Wir haben die Q-Learning-Methode in einem der früheren Artikel dieser Serie kennengelernt. Bei dieser Methode werden die Belohnungen für jede Aktion gemittelt. Im Jahr 2017 wurden zwei Arbeiten vorgestellt, die einen größeren Erfolg bei der Untersuchung der Belohnungsverteilungsfunktion zeigen. Wir sollten die Möglichkeit in Betracht ziehen, diese Technologie zur Lösung unserer Probleme einzusetzen.
preview
Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Der Artikel liefert ein Beispiel für die Verwendung eines Perzeptrons als autarkes Preisprognoseinstrument, indem er allgemeine Konzepte und den einfachsten vorgefertigten Expert Advisor vorstellt und anschließend die Ergebnisse seiner Optimierung zeigt.
preview
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5):  Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5): Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der handeln kann (z.B. Aufträge eröffnen, schließen und verwalten, Trailing Stop Loss und Trailing Profit) für mehr als ein Symbolpaar aus nur einem Symbolchart. In diesem Artikel werden wir Signale von zwei Indikatoren verwenden, in diesem Fall Bollinger Bänder® und dem Keltner Kanal.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

In diesem Artikel versuchen wir, die in dieser Reihe behandelten Konzepte zu vereinfachen, indem wir uns auf einen einzigen Indikator beschränken, der am häufigsten vorkommt und wahrscheinlich am leichtesten zu verstehen ist. Der gleitende Durchschnitt. Dabei betrachten wir die Bedeutung und die möglichen Anwendungen von vertikalen natürlichen Transformationen.
preview
Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

In diesem Teil setzen wir die Diskussion über die Modelle der Künstlichen Intelligenz fort. Wir untersuchen vor allem Algorithmen für unüberwachtes Lernen. Wir haben bereits einen der Clustering-Algorithmen besprochen. In diesem Artikel stelle ich eine Variante zur Lösung von Problemen im Zusammenhang mit der Dimensionsreduktion vor.
preview
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
preview
Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Ein neuer Artikel in unserer Serie über die Entwicklung eines Handelssystems auf der Grundlage beliebter technischer Indikatoren wird sich mit dem technischen Indikator Gator Oscillator und der Erstellung eines Handelssystems durch einfache Strategien befassen.
preview
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen

Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen

In diesem Artikel werden wir erörtern, wie wir Expert Advisors erstellen können, die in der Lage sind, Handelsstrategien auf der Grundlage der vorherrschenden Marktbedingungen eigenständig auszuwählen und zu ändern. Wir werden etwas über Markov-Ketten lernen und wie sie algorithmischen Händler helfen können.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Dieser Artikel beschreibt die Schritte zur Erstellung eines Expert Advisors (EA), der Kursausbrüche nach Konsolidierungsphasen ausnutzt. Durch die Identifizierung von Konsolidierungsbereichen und die Festlegung von Ausbruchsniveaus können Händler ihre Handelsentscheidungen auf der Grundlage dieser Strategie automatisieren. Der Expert Advisor zielt darauf ab, klare Einstiegs- und Ausstiegspunkte zu bieten und gleichzeitig falsche Ausbrüche zu vermeiden.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Dieser Teil der Artikelserie ist der Integration von WhatsApp mit MetaTrader 5 für Benachrichtigungen gewidmet. Zum besseren Verständnis haben wir ein Flussdiagramm beigefügt und werden die Bedeutung von Sicherheitsmaßnahmen bei der Integration erörtern. Der Hauptzweck von Indikatoren besteht darin, die Analyse durch Automatisierung zu vereinfachen, und sie sollten Benachrichtigungsmethoden enthalten, um Nutzer zu alarmieren, wenn bestimmte Bedingungen erfüllt sind. Erfahren Sie mehr in diesem Artikel.
preview
Erstellen eines täglichen Drawdown-Limits EA in MQL5

Erstellen eines täglichen Drawdown-Limits EA in MQL5

Der Artikel beschreibt detailliert, wie die Erstellung eines Expert Advisors (EA) auf der Grundlage des Handelsalgorithmus umgesetzt werden kann. Dies hilft, das System im MQL5 zu automatisieren und die Kontrolle über den Daily Drawdown zu übernehmen.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.
preview
Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Hier ist ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand der beliebtesten technischen Indikatoren entwickelt. In diesem Artikel stellen wir Ihnen vor, wie Sie ein Handelssystem mit dem Indikator DeMarker erstellen können.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.