Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)
Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.
Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5
Modelle des maschinellen Lernens sind schwer zu interpretieren, und das Verständnis dafür, warum unsere Modelle von unseren Erwartungen abweichen, ist von entscheidender Bedeutung, wenn wir einen Nutzen aus dem Einsatz dieser fortschrittlichen Techniken ziehen wollen. Ohne einen umfassenden Einblick in das Innenleben unseres Modells könnten wir Fehler nicht erkennen, die die Leistung unseres Modells beeinträchtigen, wir könnten Zeit mit der Entwicklung von Funktionen verschwenden, die nicht vorhersagbar sind, und langfristig riskieren wir, die Leistungsfähigkeit dieser Modelle nicht voll auszuschöpfen. Glücklicherweise gibt es eine ausgeklügelte und gut gewartete Komplettlösung, mit der wir genau sehen können, was unser Modell unter seiner Haube macht.
Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie
Ein umfassender Leitfaden zur Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage einer Unterstützungs- und Widerstandsstrategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel
Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter
Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung
Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.
Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 1): Die bereitgestellte Hardware und Umgebung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)
Dieser Teil der Artikelserie ist der Integration von WhatsApp mit MetaTrader 5 für Benachrichtigungen gewidmet. Zum besseren Verständnis haben wir ein Flussdiagramm beigefügt und werden die Bedeutung von Sicherheitsmaßnahmen bei der Integration erörtern. Der Hauptzweck von Indikatoren besteht darin, die Analyse durch Automatisierung zu vereinfachen, und sie sollten Benachrichtigungsmethoden enthalten, um Nutzer zu alarmieren, wenn bestimmte Bedingungen erfüllt sind. Erfahren Sie mehr in diesem Artikel.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 28): Der Zukunft entgegen (III)
Es gibt noch eine Aufgabe, der unser Auftragssystem nicht gewachsen ist, aber wir werden das ENDLICH verstehen. Der MetaTrader 5 bietet ein Ticketsystem, das die Erstellung und Korrektur von Auftragswerten ermöglicht. Die Idee ist, einen Expert Advisor zu haben, der das gleiche Ticketsystem schneller und effizienter machen würde.
Lernen Sie, wie man ein Handelssystem mit dem Accelerator Oscillator entwickelt
Ein neuer Artikel aus unserer Serie über die Erstellung einfacher Handelssysteme anhand der beliebtesten technischen Indikatoren. Wir werden einen neuen Indikator kennenlernen, den Accelerator Oscillator, und wir werden lernen, wie man ein Handelssystem mit ihm entwickelt.
Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt
Ein neuer Artikel in unserer Serie über die Entwicklung eines Handelssystems auf der Grundlage beliebter technischer Indikatoren wird sich mit dem technischen Indikator Gator Oscillator und der Erstellung eines Handelssystems durch einfache Strategien befassen.
Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt
Hier ist ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand der beliebtesten technischen Indikatoren entwickelt. In diesem Artikel stellen wir Ihnen vor, wie Sie ein Handelssystem mit dem Indikator DeMarker erstellen können.
Neuronale Netze leicht gemacht (Teil 31): Evolutionäre Algorithmen
Im vorangegangenen Artikel haben wir uns mit nicht-gradientenbasierten Optimierungsmethoden befasst. Wir haben uns mit dem genetischen Algorithmus vertraut gemacht. Heute werden wir dieses Thema fortsetzen und eine andere Klasse von evolutionären Algorithmen besprechen.
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5
Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
Erstellen von Multi-Symbol- und Multi-Perioden-Indikatoren
In diesem Artikel werden wir uns mit den Grundsätzen der Erstellung von Multi-Symbol- und Multi-Perioden-Indikatoren befassen. Wir werden auch sehen, wie man auf die Daten solcher Indikatoren von Expert Advisors und anderen Indikatoren zugreifen kann. Wir werden die Hauptmerkmale der Verwendung von Multi-Indikatoren in Expert Advisors und Indikatoren besprechen und sehen, wie man sie durch nutzerdefinierte Indikatorpuffer darstellen kann.
Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten
Im vorigen Artikel haben wir die DDPG-Methode vorgestellt, mit der Modelle in einem kontinuierlichen Aktionsraum trainiert werden können. Wie andere Q-Learning-Methoden neigt jedoch auch DDPG dazu, die Werte der Q-Funktion zu überschätzen. Dieses Problem führt häufig dazu, dass ein Agent mit einer suboptimalen Strategie ausgebildet wird. In diesem Artikel werden wir uns einige Ansätze zur Überwindung des genannten Problems ansehen.
Neuronale Netze leicht gemacht (Teil 62): Verwendung des Entscheidungs-Transformer in hierarchischen Modellen
In den letzten Artikeln haben wir verschiedene Optionen für die Verwendung der Entscheidungs-Transformer-Methode gesehen. Die Methode erlaubt es, nicht nur den aktuellen Zustand zu analysieren, sondern auch die Trajektorie früherer Zustände und die darin durchgeführten Aktionen. In diesem Artikel werden wir uns auf die Anwendung dieser Methode in hierarchischen Modellen konzentrieren.
Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt
Es gibt viele technische Hilfsmittel, die zur Visualisierung eines die Kurse umgebenden Kanals verwendet werden können. Eines dieser Hilfsmittel ist der Donchian Channel Indikator. In diesem Artikel erfahren Sie, wie Sie den Donchian Channel Indikator erstellen und wie Sie ihn als nutzerdefinierten Indikator mit EA handeln können.
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)
In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
Neuronale Netze leicht gemacht (Teil 33): Quantilsregression im verteilten Q-Learning
Wir setzen die Untersuchung des verteilten Q-Learnings fort. Heute wollen wir diesen Ansatz von der anderen Seite her betrachten. Wir werden die Möglichkeit prüfen, die Quantilsregression zur Lösung von Preisvorhersageaufgaben einzusetzen.
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge
Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
Quantitative Analyse in MQL5: Implementierung eines vielversprechenden Algorithmus
Wir werden der Frage nachgehen, was eine quantitative Analyse ist und wie sie von den wichtigsten Akteuren eingesetzt wird. Wir werden einen der Algorithmen für die quantitative Analyse in der Sprache MQL5 erstellen.
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze
In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
Experimente mit neuronalen Netzen (Teil 3): Praktische Anwendung
In dieser Artikelserie entwickle ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem und prüfe, ob neuronale Netze für Trader eine Hilfe sein können. MetaTrader 5 ist als autarkes Werkzeug für den Einsatz neuronaler Netze im Handel konzipiert.
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung
In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
Neuronale Netze leicht gemacht (Teil 63): Unüberwachtes Pretraining für Decision Transformer (PDT)
Wir setzen die Diskussion über die Familie der Entscheidungstransformationsmethoden fort. In einem früheren Artikel haben wir bereits festgestellt, dass das Training des Transformators, der der Architektur dieser Methoden zugrunde liegt, eine ziemlich komplexe Aufgabe ist und einen großen gekennzeichneten Datensatz für das Training erfordert. In diesem Artikel wird ein Algorithmus zur Verwendung von ungekennzeichneten Trajektorien für das vorläufige Modelltraining vorgestellt.
Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)
Rekurrente neuronale Netze (RNNs) zeichnen sich dadurch aus, dass sie Informationen aus der Vergangenheit nutzen, um zukünftige Ereignisse vorherzusagen. Ihre bemerkenswerten Vorhersagefähigkeiten wurden in verschiedenen Bereichen mit großem Erfolg eingesetzt. In diesem Artikel werden wir RNN-Modelle zur Vorhersage von Trends auf dem Devisenmarkt einsetzen und ihr Potenzial zur Verbesserung der Vorhersagegenauigkeit beim Devisenhandel aufzeigen.
Aufbau und Test von Keltner-Kanal-Handelssystemen
In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.
Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität
In diesem Teil setzen wir die Diskussion über die Modelle der Künstlichen Intelligenz fort. Wir untersuchen vor allem Algorithmen für unüberwachtes Lernen. Wir haben bereits einen der Clustering-Algorithmen besprochen. In diesem Artikel stelle ich eine Variante zur Lösung von Problemen im Zusammenhang mit der Dimensionsreduktion vor.
Neuronale Netze leicht gemacht (Teil 53): Aufteilung der Belohnung
Wir haben bereits mehrfach darüber gesprochen, wie wichtig die richtige Wahl der Belohnungsfunktion ist, mit der wir das gewünschte Verhalten des Agenten anregen, indem wir Belohnungen oder Bestrafungen für einzelne Aktionen hinzufügen. Aber die Frage nach der Entschlüsselung unserer Signale durch den Agenten bleibt offen. In diesem Artikel geht es um die Aufteilung der Belohnung im Sinne der Übertragung einzelner Signale an den trainierten Agenten.
Neuronale Netze leicht gemacht (Teil 67): Nutzung früherer Erfahrungen zur Lösung neuer Aufgaben
In diesem Artikel werden weitere Methoden zur Sammlung von Daten in einem Trainingssatz erörtert. Es liegt auf der Hand, dass der Lernprozess eine ständige Interaktion mit der Umgebung erfordert. Die Situationen können jedoch unterschiedlich sein.
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze
Im vorigen Artikel haben wir ein einfaches RNN besprochen, das trotz seiner Unfähigkeit, langfristige Abhängigkeiten in den Daten zu verstehen, in der Lage war, eine profitable Strategie zu entwickeln. In diesem Artikel werden sowohl das Long-Short Term Memory (LSTM) als auch die Gated Recurrent Unit (GRU) behandelt. Diese beiden wurden eingeführt, um die Unzulänglichkeiten eines einfachen RNN zu überwinden und es zu überlisten.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 14): Hinzufügen des Volumens zum Preis (II)
Heute werden wir unserem EA weitere Ressourcen hinzufügen. Dieser interessante Artikel kann einige neue Ideen und Methoden zur Präsentation von Informationen liefern. Gleichzeitig kann es Ihnen helfen, kleinere Fehler in Ihren Projekten zu beheben.
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 02): Kohonen-Karten
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 3): Hinzufügen von Symbolpräfixen und/oder -suffixen und der Handelszeiten
Mehrere Handelskollegen schickten E-Mails oder äußerten sich dazu, wie man diesen Multi-Currency EA bei Brokern mit Symbolnamen mit Präfixen und/oder Suffixen verwenden kann, und auch dazu, wie man Handelszeitzonen oder Handelszeitsitzungen bei diesem Multi-Currency EA implementiert.
Neuronale Netze leicht gemacht (Teil 58): Decision Transformer (DT)
Wir setzen das Studium der Methoden des Reinforcement Learning bzw. des Verstärkungslernens fort. In diesem Artikel werde ich mich auf einen etwas anderen Algorithmus konzentrieren, der die Politik des Agenten im Paradigma der Konstruktion einer Sequenz von Aktionen betrachtet.
Neuronale Netze leicht gemacht (Teil 15): Datenclustering mit MQL5
Wir fahren fort mit der Betrachtung der Clustermethode. In diesem Artikel werden wir eine neue CKmeans-Klasse erstellen, um eine der gängigsten k-means-Clustermethoden zu implementieren. Während der Tests gelang es dem Modell, etwa 500 Muster zu erkennen.
Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert
Smart Money Concept (Break Of Structure) in Verbindung mit dem RSI-Indikator, um fundierte automatisierte Handelsentscheidungen auf der Grundlage der Marktstruktur zu treffen.
Neuronale Netze leicht gemacht (Teil 54): Einsatz von Random Encoder für eine effiziente Forschung (RE3)
Wann immer wir Methoden des Verstärkungslernens in Betracht ziehen, stehen wir vor dem Problem der effizienten Erkundung der Umgebung. Die Lösung dieses Problems führt häufig dazu, dass der Algorithmus komplizierter wird und zusätzliche Modelle trainiert werden müssen. In diesem Artikel werden wir einen alternativen Ansatz zur Lösung dieses Problems betrachten.