Статьи по автоматизации торговых систем на языке MQL5

icon

Прочитайте статьи по торговым системам, которые основаны на самых разнообразных идеях. Вы узнаете как использовать  статистические методы и паттерны на японских свечах, как фильтровать сигналы и для чего нужны семафорные индикаторы.

С помощью Мастера MQL5 вы научитесь создавать робота без программирования для быстрой проверки торговых идей, а также узнаете, что такое генетические алгоритмы.

Новая статья
последние | лучшие
preview
Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов

В данной статье хочу познакомить Вас с новым комплексным методом прогнозирования временных рядов, который гармонично сочетает в себе преимущества линейных моделей и трансформеров.
preview
Нейросети в трейдинге: Практические результаты метода TEMPO

Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.
preview
Нейросети в трейдинге: Анализ облака точек (PointNet)

Нейросети в трейдинге: Анализ облака точек (PointNet)

Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.
preview
Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)

Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)

В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.
preview
Нейросети — это просто (Часть 47): Непрерывное пространство действий

Нейросети — это просто (Часть 47): Непрерывное пространство действий

В данной статье мы расширяем спектр задач нашего агента. В процесс обучения будут включены некоторые аспекты мани- и риск-менеджмента, которые являются неотъемлемой частью любой торговой стратегии.
preview
Методы Уильяма Ганна (Часть I): Создаем индикатор углов Ганна

Методы Уильяма Ганна (Часть I): Создаем индикатор углов Ганна

В чем суть теории Ганна? Как строятся углы Ганна? Создаем индикатор углов Ганна для MetaTrader 5.
preview
Машинное обучение и Data Science (Часть 15): SVM — полезный инструмент в арсенале трейдера

Машинное обучение и Data Science (Часть 15): SVM — полезный инструмент в арсенале трейдера

В этой статье мы разберем, какую роль метод опорных векторов (Support Vector Machines, SVM) играет в формировании будущего трейдинга. Статью можно рассматривать как подробное руководством, которое рассказывает, как с помощью SVM улучшить торговые стратегии, оптимизировать процесс принятия решений и открыть новые возможности на финансовых рынках. Вы погрузитесь в мир SVM через реальные приложения, пошаговые инструкции и экспертные оценки. Возможно, этот незаменимый инструмент поможет разобраться в сложностях современной торговли. В любом случае SVM станет очень полезным инструментом в арсенале каждого трейдера.
preview
Разработка торговой системы на основе индикатора OBV

Разработка торговой системы на основе индикатора OBV

Это новая статья, продолжающая нашу серию для начинающих MQL5-программистов, в которой мы учимся строить торговые системы с использованием самых популярных индикаторов. На этот раз мы будем изучать индикатор балансового объема On Balance Volume (OBV) — узнаем, как его использовать и как создать торговую систему на его основе.
preview
Машинное обучение и Data Science (Часть 14): Применение карт Кохонена на рынках

Машинное обучение и Data Science (Часть 14): Применение карт Кохонена на рынках

Хотите найти новый подход в торговле, который поможет ориентироваться на сложных и постоянно меняющихся рынках? Взгляните на карты Кохонена — инновационную форму искусственных нейронных сетей, которая поможет выявить скрытые закономерности и тренды в рыночных данных. В этой статье мы рассмотрим, как работают карты Кохонена и как их использовать для разработки эффективных торговых стратегий. Думаю, этот новый подход будет интересен как опытным трейдерам, так и начинающим.
preview
Разработка торгового советника с нуля (Часть 20): Новая система ордеров (III)

Разработка торгового советника с нуля (Часть 20): Новая система ордеров (III)

Продолжим внедрение новой системы ордеров. Создание такой системы требует хорошего владения MQL5, а также понимания того, как на самом деле работает платформа MetaTrader 5 и какие ресурсы она нам предоставляет.
preview
Разработка торгового советника с нуля (Часть 26): Навстречу будущему (I)

Разработка торгового советника с нуля (Часть 26): Навстречу будущему (I)

Сегодня мы выведем нашу систему ордеров на новый уровень, но сначала нам нужно решить несколько задач. Сейчас у нас есть разные вопросы, которые связаны с тем, как мы хотим работать и какие вещи мы делаем в течение торгового дня.
preview
Теория категорий в MQL5 (Часть 8): Моноиды

Теория категорий в MQL5 (Часть 8): Моноиды

Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы вводим моноиды как домен (множество), который отличает теорию категорий от других методов классификации данных за счет включения правил и элемента равнозначности.
preview
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
preview
Нейросети — это просто (Часть 68): Офлайн оптимизация политик на основе предпочтений

Нейросети — это просто (Часть 68): Офлайн оптимизация политик на основе предпочтений

С первых статей, посвященных обучению с подкреплением, мы так или иначе затрагиваем 2 проблемы: исследование окружающей среды и определение функции вознаграждения. Последние статьи были посвящены проблеме исследования в офлайн обучении. В данной статье я хочу Вас познакомить с алгоритмом, авторы которого полностью отказались от функции вознаграждения.
preview
Разрабатываем мультивалютный советник (Часть 7): Подбор группы с учётом форвард-периода

Разрабатываем мультивалютный советник (Часть 7): Подбор группы с учётом форвард-периода

Подбор группы экземпляров торговых стратегий с целью улучшения результатов при их совместной работы мы прежде оценивали только на том же временном периоде, на котором проводилась оптимизация отдельных экземпляров. Давайте посмотрим, что получится на форвард-периоде.
preview
Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры

Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры

Мы уже несколько продвинулись в разработке мультивалютного советника с несколькими параллельно работающими стратегиями. С учетом накопленного опыта проведем ревизию архитектуры нашего решения и попробуем ее улучшить, пока не ушли слишком далеко вперед.
preview
Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)

Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)

Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.
preview
Нейросети — это просто (Часть 55): Контрастный внутренний контроль (CIC)

Нейросети — это просто (Часть 55): Контрастный внутренний контроль (CIC)

Контрастное обучение (Contrastive learning) - это метод обучения представлению без учителя. Его целью является обучение модели выделять сходства и различия в наборах данных. В данной статье мы поговорим об использовании подходов контрастного обучения для исследования различных навыков Актера.
preview
Пользовательские индикаторы (Часть 1): Пошаговое руководство по разработке простых индикаторов на MQL5

Пользовательские индикаторы (Часть 1): Пошаговое руководство по разработке простых индикаторов на MQL5

В этой статье рассказывается о том, как писать пользовательские индикаторы на языке MQL5. Это вводная часть, в которой вы познакомитесь с основами создания простых пользовательских индикаторов. В ней продемонстрирован практический подход к программированию различных пользовательских индикаторов. Материал предназначен для тех, кто еще в начал пути по изучению программирования на MQL5.
preview
Нейросети — это просто (Часть 46): Обучение с подкреплением, направленное на достижение целей (GCRL)

Нейросети — это просто (Часть 46): Обучение с подкреплением, направленное на достижение целей (GCRL)

Предлагаю Вам познакомиться с ещё одним направлением в области обучения с подкреплением. Оно называется обучением с подкреплением, направленное на достижение целей (Goal-conditioned reinforcement learning, GCRL). В этом подходе агент обучается достигать различных целей в определенных сценариях.
preview
Нейросети — это просто (Часть 75): Повышение производительности моделей прогнозирования траекторий

Нейросети — это просто (Часть 75): Повышение производительности моделей прогнозирования траекторий

Создаваемые нами модели становятся все больше и сложнее. Вместе с тем растут затраты не только на их обучение, но и эксплуатацию. При этом довольно часто мы сталкиваемся с ситуацией, когда затраты времени на принятие решения бывают критичны. И в этой связи мы обращаем свое внимание на методы оптимизации производительности моделей без потери качества.
preview
Как построить советник, работающий автоматически (Часть 12): Автоматизация (IV)

Как построить советник, работающий автоматически (Часть 12): Автоматизация (IV)

Если вы думаете, что автоматизированные системы просты, то наверно вы еще не до конца поняли, что нужно для их создания. В данном материале мы поговорим о проблеме, с которой сталкиваются многие советники: неизбирательное исполнение ордеров, и возможное решение этой проблемы.
preview
Нейросети — это просто (Часть 64): Метод Консервативного Весового Поведенческого Клонирования (CWBC)

Нейросети — это просто (Часть 64): Метод Консервативного Весового Поведенческого Клонирования (CWBC)

В результате тестов, проведенных в предыдущих статьях, мы пришли к выводу, что оптимальность обученной стратегии во многом зависит от используемой обучаемой выборки. В данной статье я предлагаю вам познакомиться с довольно простым и эффективном методе выбора траекторий для обучения моделей.
preview
Машинное обучение и Data Science (Часть 16): Свежий взгляд на деревья решений

Машинное обучение и Data Science (Часть 16): Свежий взгляд на деревья решений

В последней части нашей серии о машинном обучении и работе с большими данными мы снова возвращаемся к деревьям решений. Эта статья предназначена для трейдеров, которые хотят понять роль деревьев решений в анализе рыночных тенденций. В ней собрана вся основная информация о структуре, предназначении и использовании таких деревьев. Мы рассмотри корни и ветви алгоритмических деревьев и узнаем, в чем же заключается их потенциал применительно к принятию торговых решений. Давайте вместе по-новому взглянем на деревья решений и посмотри, как они могут помочь преодолевать сложности на финансовых рынках.
preview
Разрабатываем мультивалютный советник (Часть 6): Автоматизируем подбор группы экземпляров

Разрабатываем мультивалютный советник (Часть 6): Автоматизируем подбор группы экземпляров

После оптимизации торговой стратегии мы получаем наборы параметров, на основе которых можно создать несколько экземпляров торговых стратегий, объединённых в одном советнике. Раньше мы делали это вручную, а теперь попробуем автоматизировать этот процесс
preview
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.
preview
Разработка торгового советника с нуля (Часть 27): Навстречу будущему (II)

Разработка торгового советника с нуля (Часть 27): Навстречу будущему (II)

Давайте перейдем к более полноценной системе ордеров непосредственно на графике. В этой статье я вам покажу способ исправить систему ордеров или, скорее, как сделать её более интуитивно понятной.
preview
Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)

Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)

Предлагаем Вам познакомиться с новым подход обнаружения объектов при помощи гиперсетей. Гиперсеть генерирующих весовые коэффициенты для основной модели, что позволяет учитывать особенности текущего состояния рынка. Такой подход позволяет улучшить точность прогнозирования, адаптируя модель к различным торговым условиям.
preview
Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)

Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)

Мы давно уже усвоили, что большую роль в стабильности обучения модели играет предварительная обработка исходных данных. И для online обработки "сырых" исходных данных мы часто используем слой пакетной нормализации. Но порой возникает необходимость обратной процедуры. Об одном из возможных подходов к решению подобных задач мы говорим в данной статье.
preview
Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке с возможностью прорисовывания разных таймфреймов.
preview
Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

В разрабатываемом советнике у нас уже заложен определённый механизм контроля просадки. Но он имеет вероятностную природу, так как основывается на результатах тестирования на исторических ценовых данных. Поэтому просадка, хотя и с небольшой вероятностью, может иногда превышать максимальные ожидаемые значения. Попробуем добавить механизм, обеспечивающий гарантированное соблюдение заданного уровня просадки.
preview
Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.
preview
Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Для получения хорошего советника нам надо подобрать для него множество хороших наборов параметров экземпляров торговых стратегий. Это можно делать вручную, запуская оптимизацию на разных символах, и затем отбирая лучшие результаты. Но лучше поручить эту работу программе и заняться более продуктивной деятельностью.
preview
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.
preview
Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть II): Перемещаемый интерфейс (II)

Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть II): Перемещаемый интерфейс (II)

Раскройте потенциал динамического представления данных в своих торговых стратегиях и утилитах с помощью нашего подробного руководства по созданию перемещаемых графических интерфейсов в MQL5. Погрузитесь в фундаментальные принципы объектно-ориентированного программирования и узнайте, как легко и эффективно разрабатывать и использовать один или несколько перемещаемых графических интерфейсов на одном графике.
preview
Нейросети — это просто (Часть 50): Soft Actor-Critic (оптимизация модели)

Нейросети — это просто (Часть 50): Soft Actor-Critic (оптимизация модели)

В предыдущей статье мы реализовали алгоритм Soft Actor-Critic, но не смогли обучить прибыльную модель. В данной статье мы проведем оптимизацию ранее созданной модели для получения желаемых результатов её работы.
preview
Нейросети — это просто (Часть 56): Использование ядерной нормы для стимулирования исследования

Нейросети — это просто (Часть 56): Использование ядерной нормы для стимулирования исследования

Исследование окружающей среды в задачах обучения с подкреплением является актуальной проблемой. Ранее мы уже рассматривали некоторые подходы. И сегодня я предлагаю познакомиться с ещё одним методом, основанным на максимизации ядерной нормы. Он позволяет агентам выделять состояния среды с высокой степенью новизны и разнообразия.
preview
Нейросети — это просто (Часть 19): Ассоциативные правила средствами MQL5

Нейросети — это просто (Часть 19): Ассоциативные правила средствами MQL5

Продолжаем тему поиска ассоциативных правил. В предыдущей статье мы рассмотрели теоретические аспекты данного типа задач. В этой статье я продемонстрирую реализацию метода FP-Growth средствами MQL5. А также мы протестируем нашу реализацию на реальных данных.
preview
Нейросети — это просто (Часть 51): Актор-критик, управляемый поведением (BAC)

Нейросети — это просто (Часть 51): Актор-критик, управляемый поведением (BAC)

В последних двух статьях рассматривался алгоритм Soft Actor-Critic, который включает энтропийную регуляризацию в функцию вознаграждения. Этот подход позволяет балансировать исследование среды и эксплуатацию модели, но он применим только к стохастическим моделям. В данной статье рассматривается альтернативный подход, который применим как для стохастических, так и для детерминированных моделей.
preview
Шаблоны проектирования в MQL5 (Часть I): Порождающие шаблоны (Creational Patterns)

Шаблоны проектирования в MQL5 (Часть I): Порождающие шаблоны (Creational Patterns)

Существуют методы, которые можно использовать для решения типовых задач. Поняв один раз, как использовать эти методы, можно затем эффективно писать программы и применять концепцию DRY ("Не повторяйся"). В этом контексте очень полезными оказываются шаблоны проектирования, которые могут давать решения хорошо описанных и повторяющихся проблем.