
Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería
Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.

Redes neuronales en el trading: Modelos del espacio de estados
Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.

Obtenga una ventaja sobre cualquier mercado (Parte III): Índice de gasto de Visa
En el mundo de los macrodatos, hay millones de conjuntos de datos alternativos que pueden mejorar nuestras estrategias de negociación. En esta serie de artículos le ayudaremos a identificar los conjuntos de datos públicos más informativos.

Analizamos ejemplos de estrategias comerciales en el terminal de cliente
En este artículo, utilizaremos esquemas de bloques para analizar visualmente la lógica de los asesores de entrenamiento adjuntos al terminal, ubicados en la carpeta Experts\Free Robots, que negocian con patrones de velas.

Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos
Los núcleos del proceso gaussiano son la función de covarianza de la distribución normal que podría desempeñar un papel en el pronóstico. Exploramos este algoritmo único en una clase de señal personalizada de MQL5 para ver si podría usarse como una señal de entrada y salida principal.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)
La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo
En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos
En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.

Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo
En este artículo daremos inicio a la creación de la clase principal de gestión de riesgo, la cual será fundamental para administrar el riesgo en el sistema. Nos enfocaremos en construir las bases, definiendo estructuras, variables y funciones esenciales. Además, implementaremos los métodos necesarios para asignar valores a las pérdidas y ganancias máximas, estableciendo así los cimientos de esta gestión.

Reimaginando las estrategias clásicas (Parte VI): Análisis de múltiples marcos temporales
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy, examinaremos la popular estrategia de análisis de múltiples marcos temporales para juzgar si la estrategia se podría mejorar con IA.

Redes neuronales en el trading: Resultados prácticos del método TEMPO
Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.

Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.

Aprendiendo MQL5 de principiante a profesional (Parte IV): Sobre arrays, funciones y variables globales del terminal
El artículo es una continuación de la serie para principiantes. En él proporcionamos información detallada sobre los arrays de datos y la interacción de datos y funciones, así como de las variables globales del terminal que permiten el intercambio de datos entre diferentes programas MQL5.

Características del Wizard MQL5 que debe conocer (Parte 32): Regularización
La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.

Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales
Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5
En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales
Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.

Integración en MQL5: Python
Python es un lenguaje de programación conocido y popular con muchas características, especialmente en los campos de las finanzas, la ciencia de datos, la Inteligencia Artificial y el Aprendizaje Automático. Python es una herramienta poderosa que también puede resultar útil en el trading. MQL5 nos permite utilizar este poderoso lenguaje como una integración para lograr nuestros objetivos de manera efectiva. En este artículo, compartiremos cómo podemos usar Python como una integración en MQL5 después de aprender información básica sobre Python.

Monitoreo de transacciones usando notificaciones push: ejemplo de un servicio en MetaTrader 5
En este artículo veremos cómo crear un programa de servicio para enviar notificaciones a un smartphone sobre los resultados comerciales. Asimismo, aprenderemos cómo trabajar con listas de objetos de la biblioteca estándar para organizar una muestra de objetos según las propiedades requeridas.

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)
En esta discusión, crearemos nuestro primer Asesor Experto en MQL5 basado en el indicador que creamos en el artículo anterior. Cubriremos todas las características necesarias para automatizar el proceso, incluida la gestión de riesgos. Esto beneficiará ampliamente a los usuarios para pasar de la ejecución manual de operaciones a sistemas automatizados.

Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases
Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.

Reimaginando las estrategias clásicas (Parte IV): SP500 y bonos del Tesoro de EE.UU.
En esta serie de artículos, analizamos estrategias de trading clásicas utilizando algoritmos modernos para determinar si podemos mejorar la estrategia utilizando IA. En el artículo de hoy, retomamos un enfoque clásico para operar con el SP500 utilizando la relación que guarda con los bonos del Tesoro estadounidense.

Operar con noticias de manera sencilla (Parte 3): Realizando operaciones
En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.

Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)
En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)
En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.

Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA
Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.

Desarrollo de un sistema de repetición (Parte 74): Un nuevo Chart Trade (I)
En este artículo, modificaremos el último código visto en esta secuencia sobre Chart Trade. Estos cambios son necesarios para adaptar el código al modelo actual del sistema de repetición/simulador. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe considerarse una aplicación destinada a otros fines que no sean el aprendizaje y el estudio de los conceptos mostrados.

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida
La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram
En este artículo, creamos un Asesor Experto integrado con MQL5 y Telegram que envía señales de cruce de medias móviles a Telegram. Detallamos el proceso de generación de señales de trading a partir de cruces de medias móviles, implementando el código necesario en MQL5, y asegurando que la integración funciona a la perfección. El resultado es un sistema que proporciona alertas comerciales en tiempo real directamente a su chat grupal de Telegram.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram
En este artículo, creamos un Asesor Experto (EA) en MQL5 para enviar mensajes a Telegram usando un bot. Configuramos los parámetros necesarios, incluido el token de API del bot y el ID de chat, y luego realizamos una solicitud HTTP POST para entregar los mensajes. Posteriormente, gestionamos la respuesta para garantizar una entrega exitosa y solucionar cualquier problema que surja en caso de falla. Esto garantiza que enviemos mensajes desde MQL5 a Telegram a través del bot creado.

Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA
En este artículo, profundizamos en los aspectos cruciales de la elección de los datos de Forex más relevantes y de alta calidad para mejorar el rendimiento de los modelos de IA.

Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5
Este artículo describe los pasos para implementar Deus EA basado en los indicadores RSI y promedio móvil para guiar el trading automatizado.

Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático
La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.

Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico
La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas
Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.

Gestión de Riesgo (Parte 2): Implementando el Cálculo de Lotes en una Interfaz Gráfica
En este artículo exploraremos cómo mejorar y aplicar de manera más efectiva los conceptos abordados en el artículo anterior, utilizando las poderosas librerías de controles gráficos de MQL5. Te guiaré paso a paso en la creación de una interfaz gráfica completamente funcional, explicando el plan de diseño detrás de ella, así como el propósito y funcionamiento de cada método empleado. Además, al final del artículo, pondremos a prueba el panel que desarrollaremos, asegurándonos de que funcione correctamente y cumpla con los objetivos planteados.

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (I) Ajuste fino
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.

Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA
Es una práctica común que muchos modelos de Inteligencia Artificial predigan un único valor futuro. Sin embargo, en este artículo profundizaremos en la poderosa técnica de utilizar modelos de aprendizaje automático para predecir múltiples valores futuros. Este enfoque, conocido como pronóstico de múltiples pasos, nos permite predecir no sólo el precio de cierre de mañana, sino también el de pasado mañana y más allá. Al dominar la previsión en varios pasos, los operadores y los científicos de datos pueden obtener conocimientos más profundos y tomar decisiones más informadas, mejorando significativamente sus capacidades de predicción y planificación estratégica.

Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes
En esta serie de artículos, analizaremos empíricamente las estrategias comerciales clásicas para ver si podemos mejorarlas utilizando IA. En la discusión de hoy, intentamos predecir máximos más altos y mínimos más bajos utilizando el modelo de análisis discriminante lineal.