手动交易的风险管理
在本文中,我们将详细探讨如何从头编写手动交易的风险管理类。这个类也可以被用作自动化程序的算法交易者继承的基类。
神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。
数据科学和机器学习(第 16 部分):全新面貌的决策树
在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。
神经网络变得轻松(第二十八部分):政策梯度算法
我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。
开发回放系统(第 37 部分):铺平道路 (一)
在这篇文章中,我们终于要开始做我们早就想做的事情了。之前,由于缺乏 "坚实的基础",我没有信心公开介绍这部分内容。现在我有了这样做的基础。我建议您尽可能集中精力理解本文的内容。我指的不仅仅是阅读,我想强调的是,如果你不理解这篇文章,你可能就是完全放弃了理解以后文章内容的希望。
神经网络变得轻松(第四十七部分):连续动作空间
在本文中,我们扩展了代理者的任务范围。训练过程将包括一些资金和风险管理等方面,这是任何交易策略不可或缺的部分。
神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题
在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。
通过应用程序了解MQL5中的函数
函数在任何编程语言中都是至关重要的东西,它有助于开发人员应用(DRY)的概念,这意味着不要重复自己,还有许多其他好处。在本文中,您将找到更多关于函数的信息,以及我们如何使用简单的应用程序在MQL5中创建自己的函数,这些应用程序可以在任何系统中使用或调用。您必须在不使事情复杂化的情况下丰富您的交易系统。
神经网络变得简单(第 67 部分):按照过去的经验解决新任务
在本文中,我们将继续讨论收集数据至训练集之中的方法。显然,学习过程需要与环境不断互动。不过,状况可能会有所不同。
开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位
让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。
改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA
我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。
了解如何在MQL5中处理日期和时间
这是一篇关于一个新的重要话题的新文章,这个话题是关于日期和时间的。作为交易工具的交易员或程序员,了解如何很好、有效地处理日期和时间这两个方面至关重要。因此,我将分享一些重要信息,关于我们如何处理日期和时间,以便顺利、简单地创建有效的交易工具。
软件开发和 MQL5 中的设计模式(第 2 部分):结构模式
在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。
开发回放系统(第30部分):EA交易项目——C_Mouse类(四)
今天,我们将学习一种技术,它可以在程序员职业生涯的不同阶段对我们有很大帮助。通常,受到限制的不是平台本身,而是谈论限制的人的知识。这篇文章将告诉你,凭借常识和创造力,你可以让 MetaTrader 5 平台变得更加有趣和通用,而无需创建疯狂的程序或类似的东西,并创建简单但安全可靠的代码。我们将利用我们的创造力修改现有代码,而不删除或添加源代码中的任何一行。
如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号
本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。
利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)
依靠我们的以 MQL5 创建可移动 GUI 的深度指南,在您的交易策略和实用程序中解锁动态数据表达的潜力。深入研究面向对象编程的基本原理,并探索如何在同一图表上轻松高效地设计和实现单个或多个可移动 GUI。
神经网络实验(第 7 部分):传递指标
传递指标至感知器的示例。本文讲述了一般概念,并展示了最简单的现成智能交易系统,后随其优化和前向验算结果。
开发回放系统(第 40 部分):启动第二阶段(一)
今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。
时间序列分类问题中的因果推理
在本文中,我们将研究使用机器学习的因果推理理论,以及 Python 中的自定义方法实现。因果推理和因果思维植根于哲学和心理学,在我们理解现实中起着重要作用。
开发回放系统 — 市场模拟(第 24 部分):外汇(V)
今天,我们将去除阻止基于最后成交价进行模拟的限制,并将专门针对这类模拟引入一个新的切入点。整个操作机制将基于外汇市场的原则。该过程的主要区别在于出价(Bid)和最后成交价(Last)模拟的分离。不过,重点要注意,用于随机化时间,并将其调整为与 C_Replay 类兼容的方法在两类模拟中保持雷同。这很好,因为一种模式的变化会导致另一种模式的自动改进,尤其遇到处理跳价之间的时间。
神经网络变得简单(第 68 部分):离线优先引导政策优化
自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。
开发回放系统 — 市场模拟(第 22 部分):外汇(III)
虽然这是关于这个主题的第三篇文章,但我必须为那些还不了解股票市场和外汇市场之间区别的人解释一下:最大的区别在于,在外汇中没有、或者更确切地说,我们得不到交易过程中有关一些实际发生关键处的信息。
神经网络变得轻松(第五十部分):软性扮演者-评价者(模型优化)
在上一篇文章中,我们实现了软性扮演者-评论者算法,但未能训练出一个可盈利的模型。在此,我们将优化先前创建的模型,以期获得所需的结果。
神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)
在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。
MQL5中的范畴论(第20部分):自我注意的迂回与转换
我们暂时离开我们的系列文章,考虑一下 chatGPT 中的部分算法。有没有从自然变换中借鉴的相似之处或概念?我们尝试用信号类格式的代码,在一篇有趣的文章中回答这些和其他问题。
您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对
“K-均值”聚类采用数据点分组的方式,该过程最初侧重于数据集的宏观视图,使用随机生成的聚类质心,然后放大并调整这些质心,从而准确表示数据集。我们将对此进行研究,并开拓一些它的用例。
MQL5中的范畴论(第23部分):对双重指数移动平均的不同看法
在这篇文章中,我们继续我们的主题,最后是从“新”的角度处理日常交易指标。我们正在为这篇文章处理自然变换的水平组合,而这方面的最佳指标是双重指数移动平均(DEMA),它扩展了我们刚刚涵盖的内容。
在MQL5中置换价格柱
在这篇文章中,我们提出了一种置换价格柱的算法,并详细说明了如何使用置换测试来识别策略性能被编造来欺骗 EA 交易的潜在买家的情况。
神经网络变得轻松(第五十三部分):奖励分解
我们已经不止一次地讨论过正确选择奖励函数的重要性,我们通过为单独动作添加奖励或惩罚来刺激代理者的预期行为。但是关于由代理者解密我们的信号的问题仍旧悬而未决。在本文中,我们将探讨将单独信号传输至已训练代理者时的奖励分解。
MQL5中的范畴论(第19部分):自然性四边形归纳法
我们继续通过探讨自然性四边形归纳法来研究自然变换。对于使用MQL5向导构建的EA交易来说,对多货币实现的轻微限制意味着我们正在通过脚本展示我们的数据分类能力。所考虑的主要应用是价格变化分类及其预测。
开发回放系统 — 市场模拟(第 21 部分):外汇(II)
我们将继续构建一个在外汇市场工作的系统。为了解决这个问题,我们必须在加载以前的柱线之前首先声明加载跳价。这解决了问题,但同时迫使用户遵循配置文件中的某些结构,就个人而言,这对我来说没有多大意义。原因是,通过设计一个负责分析和执行配置文件中内容的程序,我们可以允许用户按任何顺序声明他需要的元素。
神经网络变得简单(第 60 部分):在线决策转换器(ODT)
最近两篇文章专门介绍了决策转换器方法,其在期望奖励的自回归模型境况下针对动作序列进行建模。在本文中,我们将研究该方法的另一种优化算法。
MQL5中的范畴论(第21部分):使用LDA的自然变换
这篇文章是我们系列的第21篇,继续研究自然变换以及如何使用线性判别分析(linear discriminant analysis,LDA)来实现它们。我们以信号类格式展示了它的应用程序,就像在前一篇文章中一样。
开发回放系统 — 市场模拟(第 18 部分):跳价和更多跳价(II)
显然,目前的衡量度与创建 1-分钟柱线的理想时间相距甚远。这是我们要率先解决的一件事。解决同步问题并不困难。也许这看起来很难,但实际上却很简单。在上一篇文章中,我们没有进行所需的调整,因为它的目的是解释如何把图表上创建 1-分钟柱线的跳价数据转移至市场观察窗口。
利用 Python 和 MQL5 构建您的第一个玻璃盒模型
如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。
开发回放系统 — 市场模拟(第 20 部分):外汇(I)
本文的最初目标不是涵盖外汇交易的所有可能性,而更是出于适配系统,如此您就至少可以执行一次市场回放。我们把模拟留待其它时刻。不过,如果我们没有跳价而仅有柱线的话,稍加努力,我们就可以模拟外汇市场中可能发生的交易。直到我们研究如何适配模拟器之前,情况一直如此。不经修改就尝试在系统内处理外汇数据会导致一系列错误。
神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法
在上一篇文章中,我们概述了 DDPG 方法,它允许在连续动作空间中训练模型。然而,与其它 Q-学习方法一样,DDPG 容易高估 Q-函数的数值。这个问题往往会造成训练代理者时选择次优策略。在本文中,我们将研究一些克服上述问题的方式。
如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号
本文中的多币种 EA 是智能交易系统或交易机器人,能从一个品种的图表里交易(开单、平单、及管理订单,例如:尾随止损和止盈)多个品种(货币对)。这次我们只会用到 1 个指标,即多时间帧或单一时间帧中的三角移动平均线。
使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。