Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".
Парадигмы программирования (Часть 1): Процедурный подход к разработке советника на основе ценовой динамики
Узнайте о парадигмах программирования и их применении в коде MQL5. В этой статье исследуются особенности процедурного программирования, а также предлагаются практические примеры. Вы узнаете, как разработать советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Кроме того, статья знакомит с парадигмой функционального программирования.
Разметка данных в анализе временных рядов (Часть 4): Декомпозиция интерпретируемости с использованием разметки данных
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)
В статье исследуется алгоритм BSA, основанный на поведении птиц, который вдохновлен коллективным стайным взаимодействием птиц в природе. Различные стратегии поиска индивидов в BSA, включая переключение между поведением в полете, бдительностью и поиском пищи, делают этот алгоритм многоаспектным. Он использует принципы стайного поведения, коммуникации, адаптивности, лидерства и следования птиц для эффективного поиска оптимальных решений.
DoEasy. Сервисные функции (Часть 2): Паттерн "Внутренний бар"
В статье продолжим рассматривать ценовые паттерны в библиотеке DoEasy. Создадим класс паттерна "Внутренний бар" формаций Price Action.
Риск-менеджер для ручной торговли
В данной статье мы подробно раскроем написание класса риск-менеджера для ручной торговли с нуля. Также данный класс может быть использован как базовый класс для наследования трейдерам, которые торгуют алгоритмически.
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)
Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.
Гибридизация популяционных алгоритмов. Последовательная и параллельная схема
В статье мы погрузимся в мир гибридизации алгоритмов оптимизации, рассмотрев три ключевых типа: смешивание стратегий, последовательную и параллельную гибридизации. Мы проведем серию экспериментов, сочетая и тестируя соответствующие алгоритмы оптимизации.
Разработка системы репликации (Часть 32): Система ордеров (I)
Из всего, что было разработано до настоящего момента, данная система, как вы наверняка заметите и со временем согласитесь, - является самым сложным. Сейчас нам нужно сделать нечто очень простое: заставить нашу систему имитировать работу торгового сервера на практике. Эта необходимость точно реализовывать способ моделирования действий торгового сервера кажется простым делом. По крайней мере, на словах. Но нам нужно сделать это так, чтобы для пользователя системы репликации/моделирования всё происходило как можно более незаметно или прозрачно.
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)
Эта статья представляет уникальный эксперимент, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Работа в этом направлении позволит глубже понять, какие конкретные алгоритмы могут успешно продолжать поиск из координат, установленных пользователем в качестве отправной точки, и какие факторы влияют на их успешность в этом процессе.
DoEasy. Сервисные функции (Часть 1): Ценовые паттерны
В статье начнём разрабатывать методы поиска ценовых паттернов по данным таймсерий. Паттерн имеет определённый набор параметров, общий для любого вида и типа паттернов. Все данные такого рода будут сосредоточены в классе объекта базового абстрактного паттерна. Сегодня создадим класс абстрактного паттерна и класс паттерна Пин-бар.
Интеграция ML-моделей с тестером стратегий (Заключение): Реализация регрессионной модели для прогнозирования цен
В данной статье описывается реализация регрессионной модели на основе дерева решений для прогнозирования цен финансовых активов. Мы уже провели подготовку данных, обучение и оценку модели, а также ее корректировку и оптимизацию. Однако важно отметить, что данная модель является лишь исследованием и не должна использоваться при реальной торговле.
Мультибот в MetaTrader (Часть II): улучшенный динамический шаблон
Развивая тему предыдущей статьи про мультибота, я решил создать более гибкий и функциональный шаблон, который обладает большими возможностями и может эффективно применяться как во фрилансе, так и использоваться в виде базы для разработки мультивалютных и мультипериодных советников с возможностью интеграции с внешними решениями.
Перестановка ценовых баров в MQL5
В этой статье мы представляем алгоритм перестановки ценовых баров и подробно рассказываем, как тесты на перестановку (permutation tests) можно использовать для выявления случаев, когда эффективность стратегии была сфабрикована с целью обмануть потенциальных покупателей советников.
Угловые операции для трейдеров
В этой статье будут рассмотрены угловые операции. Мы рассмотрим методы построения углов и способы их применения в трейдинге.
DoEasy. Элементы управления (Часть 33): вертикальный "ScrollBar"
В статье продолжим разработку графических элементов библиотеки DoEasy, и добавим вертикальную прокрутку элементов управления объекта-формы и некоторые полезные функции и методы, которые потребуются в дальнейшем.
Изучение MQL5 — от новичка до профи (Часть II): Базовые типы данных и использование переменных
Продолжение серии для начинающих. Здесь мы рассмотрим, как создавать константы и переменные, записывать дату, цвета и другие полезные данные. Научимся создавать перечисления вроде дней недели или стилей линий (сплошная, пунктирная и т.д.). Переменные и выражения - это база программирования. Они обязательно есть в 99% программ, поэтому понимать их критически важно. И поэтому, если вы - новичок в программировании - прошу. Уровень знания программирования: очень базовый - в пределах моей предыдущей статьи (ссылка - в начале).
Альтернативные показатели риска и доходности в MQL5
В этой статье мы представим реализацию нескольких показателей доходности и риска, рассматриваемых как альтернативы коэффициенту Шарпа, и исследуем гипотетические кривые капитала для анализа их характеристик.
Балансировка риска при одновременной торговле нескольких торговых инструментов
Данная статья позволит новичку с нуля написать реализацию скрипта для балансировки рисков при одновременной торговле нескольких торговых инструментов, а опытным пользователям возможно даст новые идеи для реализации своих решений в части предложенных вариантов в данной статье.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 2): Сигналы индикатора - мультитаймфреймовый Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. На этот раз мы будем использовать только один индикатор, а именно Parabolic SAR или iSAR на нескольких таймфреймах, начиная с PERIOD_M15 и заканчивая PERIOD_D1.
Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)
В статье рассмотрим принцип построения многопопуляционных алгоритмов и в качестве примера такого вида алгоритмов разберём Эволюцию социальных групп (ESG), новый авторский алгоритм. Мы проанализируем основные концепции, механизмы взаимодействия популяций и преимущества этого алгоритма, а также рассмотрим его производительность в задачах оптимизации.
Трейлинг-стоп в трейдинге
В этой статье мы рассмотрим использование трейлинг-стопа в торговле — насколько он полезен и эффективен, и как его можно использовать. Эффективность трейлинг-стопа во многом зависит от волатильности цены и подбора уровня стоп-лосса. Для установки стоп-лосса могут использоваться самые разные подходы.
Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть II
В этой статье мы рассмотрим бинарный генетический алгоритм (BGA), который моделирует естественные процессы, происходящие в генетическом материале у живых существ в природе.
Тип рисования DRAW_ARROW в мультисимвольных мультипериодных индикаторах
В статье рассмотрим рисование стрелочных мультисимвольных мультипериодных индикаторов. Доработаем методы класса для корректного отображения стрелок, отображающих данные стрелочных индикаторов, рассчитанных на символе/периоде, не соответствующих символу/периоду текущего графика.
Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть I
В этой статье мы проведем исследование различных методов, применяемых в бинарных генетических алгоритмах и других популяционных алгоритмах. Мы рассмотрим основные компоненты алгоритма, такие как селекция, кроссовер и мутация, а также их влияние на процесс оптимизации. Кроме того, мы изучим способы представления информации и их влияние на результаты оптимизации.
Графический интерфейс: советы и рекомендации по созданию графической библиотеки на MQL
Мы рассмотрим основы библиотек графического интерфейса, чтобы вы могли понять, как они работают, или даже начали создавать свои собственные.
Эластичная чистая регрессия с использованием покоординатного спуска в MQL5
В этой статье мы исследуем практическую реализацию эластичной чистой регрессии (elastic net regression), чтобы минимизировать переобучение и в то же время автоматически отделять полезные предикторы от тех, которые имеют небольшую прогностическую силу.
Популяционные алгоритмы оптимизации: Алгоритмы искусственной микро-иммунной системы (Micro Artificial immune system, Micro-AIS)
Статья рассказывает о методе оптимизации, основанном на принципах функционирования иммунной системы организма — Micro Artificial Immune System (Micro-AIS) — модификацию AIS. Micro-AIS использует более простую модель иммунной системы и простые операции обработки иммунной информации. Статья также обсуждает преимущества и недостатки Micro-AIS по сравнению с обычным AIS.
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.
Популяционные алгоритмы оптимизации: Алгоритмы эволюционных стратегий (Evolution Strategies, (μ,λ)-ES и (μ+λ)-ES)
В этой статье будет рассмотрена группа алгоритмов оптимизации, известных как "Эволюционные стратегии" (Evolution Strategies или ES). Они являются одними из самых первых популяционных алгоритмов, использующих принципы эволюции для поиска оптимальных решений. Будут представлены изменения, внесенные в классические варианты ES, а также пересмотрена тестовая функция и методика стенда для алгоритмов.
Индикатор исторических позиций на графике в виде диаграммы их прибыли/убытка
В статье рассмотрим вариант получения информации о закрытых позициях по истории их сделок. Создадим простой индикатор, отображающий в виде диаграммы приблизительный профит/убыток позиций на каждом баре.
Тесты на перестановку Монте-Карло в MetaTrader 5
В статье рассматриваются тесты на перестановку на основе перетасованных тиковых данных на любом советнике исключительно силами MetaTrader 5.
Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)
В данной статье исследуется влияние изменения формы распределений вероятностей на производительность алгоритмов оптимизации. Мы проводим эксперименты на тестовом алгоритме 'Умный головастик' (SC), чтобы оценить эффективность различных распределений вероятностей в контексте оптимизационных задач.
Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II
Первая часть статьи была посвящена известному и популярному алгоритму - имитации отжига, были рассмотрены его достоинства и подробно описаны недостатки. Вторая часть статьи посвящена кардинальному преобразованию алгоритма, его перерождению в новый алгоритм оптимизации "имитации изотропного отжига, SIA".
Цветные буферы в мультисимвольных мультипериодных индикаторах
В статье пересмотрим структуру индикаторного буфера в мультисимвольных мультипериодных индикаторах и организуем вывод на график цветных буферов этих индикаторов.
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I
Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"
Создаем простой мультивалютный советник с использованием MQL5 (Часть 1): Сигналы на основе ADX в сочетании с Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами и т. д.) более чем одной парой символов с одного графика.
Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)
Статья представляет полное исследование метода Нелдера-Мида объясняя, как симплекс — пространство параметров функции — изменяется и перестраивается на каждой итерации для достижения оптимального решения, а также описывает способ улучшения этого метода.
Изучение MQL5 от новичка до профи (Часть I): Начинаем программировать
Эта статья является вводной для целого цикла статей о программировании. Здесь предполагается, что читатель вообще не сталкивался с программированием раньше. Поэтому начинаю я с самых основ. Уровень знания программирования: абсолютный новичок.
Популяционные алгоритмы оптимизации: Дифференциальная эволюция (Differential Evolution, DE)
В этой статье поговорим об алгоритме, который демонстрирует самые противоречивые результаты из всех рассмотренных ранее, алгоритм дифференциальной эволюции (DE).