
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)
前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。

一からの取引エキスパートアドバイザーの開発(第24部):システムの堅牢性の提供(I)
この記事では、堅牢で安全な使用を保証するために、システムの信頼性を高めます。望ましい堅牢性を実現する方法の1つは、コードを可能な限り再利用して、常にさまざまな場合にテストされるようにすることです。しかし、これは方法の1つにすぎません。もう1つは、OOPを使用することです。

標準偏差による取引システムの設計方法を学ぶ
これは、MetaTrader 5取引プラットフォームで最も人気のあるテクニカル指標による取引システムの設計方法に関する連載の新しい記事です。この新しい記事では、標準偏差指標による取引システムの設計方法を学びます。

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。

一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)
受注システムをより柔軟にします。ここでは、コードをより柔軟にする変更を検討して、ポジションストップレベルをより迅速に変更できるようにします。

ニューラルネットワークが簡単に(第20部):オートエンコーダ
教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。

知っておくべきMQL5ウィザードのテクニック(第02回):コホネンマップ
この連載では、MQL5ウィザードがトレーダーの主力であるべきことを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。

一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)
今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。

ウィリアムズPRによる取引システムの設計方法を学ぶ
MetaTrader 5で使用される最も人気のあるテクニカル指標によってMQL5で取引システムを設計する方法を学ぶ連載の新しい記事です。今回は、ウィリアムズの%R指標による取引システムの設計方法について学びます。

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール
アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。

一目均衡表による取引システムの設計方法を学ぶ
最も人気のある指標の取引システムを設計する方法についての連載の新しい記事です。今回は一目均衡表とこの指標によって取引システムを設計する方法について説明します。

ニューラルネットワークが簡単に(第18部):アソシエーションルール
この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。

データサイエンスと機械学習(第05回):決定木
決定木は、人間の思考方法を模倣してデータを分類します。木を作り、それを使ってデータを分類・予測する方法を見てみましょう。決定木アルゴリズムの主な目的は、不純物を含むデータを純粋なノードまたはそれに近いノードに分離することです。

知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析
今日のトレーダーは哲学者であり、ほとんどの場合(意識的かどうかにかかわらず...)新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。トレーダーの時間とミスを避ける必要性は明らかに重視されます。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。

一からの取引エキスパートアドバイザーの開発(第21部):新規受注システム(IV)
まだ完成していないものの、ようやくビジュアルなシステムが動き出します。ここでは主な変更を完成します。かなりの数になりますが、どれも必要なものばかりです。全体的にはなかなか面白いものになりそうです。

一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)
新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)
今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング
機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。

ニューラルネットワークの実験(第1回):幾何学の再検討
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。

Volumesによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事です。今回は、Volumes指標について紹介します。出来高という概念は、金融市場の取引において非常に重要な要素の1つであり、注意を払う必要があります。この記事では、Volumes指標を使用した簡単な取引システムの設計方法について説明します。

MFIによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する連載のこの新しい記事では、新しくマネーフローインデックス(Money Flow Index、MFI)テクニカル指標を考察します。その詳細を学び、MQL5によって簡単な取引システムを開発し、MetaTrader 5で実行します。

ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。

モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。

データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する
今回は、米国経済のファンダメンタルズに基づいて、私たちのロジスティックモデルを使って株式市場の暴落の予測を試みます。NETFLIXとAPPLEが私たちが注目する銘柄です、2019年と2020年の過去の市場の暴落を使って、モデルが現在の破滅と暗雲でどのように機能するか見てみましょう。

一からの取引エキスパートアドバイザーの開発(第18部):新規受注システム(I)
今回は新規受注システムの第一弾です。本連載で紹介し始めてから、このEAは、同じチャート上注文システムモデルを維持しながら様々な変更と改良を受けてきました。


ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法
このビデオコースでは、MetaTrader 5をダウンロード、インストールして自動売買のために設定する方法を学びます。また、チャートの設定や自動売買のオプションの調整方法についても学びます。最初のバックテストをおこないます。このコースの終わりには、画面の前に座らなくても、24時間365日自動的に取引できるエキスパートアドバイザー(EA)をインポートする方法が分かります。

AD(蓄積/分散、Accumulation/Distribution)による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事へようこそ。今回は、AD(蓄積/分散、Accumulation/Distribution)という新しいテクニカル指標について学び、シンプルなAD取引戦略に基づいてMQL5取引システムを設計する方法を学びます。

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。

ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。

ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング
クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。

一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)
Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。

OBVによる取引システムの設計方法を学ぶ
今回は、初心者向けのシリーズとして、人気のあるいくつかの指標をもとに取引システムを設計する方法について、新しい記事をお届けします。今回は、新しい指標であるOBV (On Balance Volume)を学び、その使い方とそれに基づいた取引システムの設計を学びます。


ビデオ:シンプルな自動取引 – MQL5でシンプルなエキスパートアドバイザーを作成する方法
私のコースの学生の大半は、MQL5を理解するのが本当に難しいと感じていました。これに加えて、彼らはいくつかのプロセスを自動化する簡単な方法を探していました。この記事に含まれる情報を読んで、今すぐMQL5のを使い始める方法を見つけてください。これまでに何らかの形のプログラミングをおこなったことがない場合でも、観察した前のイラストを理解できない場合でも.です。

ニューラルネットワークが簡単に(第14部):データクラスタリング
前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。

データサイエンスと機械学習(第03回):行列回帰
今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。

パラボリックSARによる取引システムの設計方法を学ぶ
最も人気のある指標を使用して取引システムを設計する方法についての連載を続けます。この記事では、パラボリックSAR指標について詳しく説明し、いくつかの簡単な戦略を使用してMetaTrader 5で使用する取引システムを設計する方法を学びます。

一からの取引エキスパートアドバイザーの開発(第14部):価格別出来高の追加((II)
今日は、EAにいくつかのリソースを追加します。この興味深い記事では、情報を提示するためのいくつかの新しいアイデアと方法を提供します。同時に、プロジェクトの小さな欠陥を修正するのにも役立ちます。

ATRによる取引システムの設計方法を学ぶ
簡単な取引システムの設計方法を学ぶ連載の続編として、取引に使用できる新しいテクニカルツールを学びます。今回は、もう1つの人気あるテクニカル指標であるATR(Average True Range、アベレージトゥルーレンジ)です。


ADXによる取引システムの設計方法を学ぶ
今回は、最も人気のある指標を使って取引システムを設計する連載の続きとして、ADX (Average Directional Index)指標についてお話します。この指標を理解するために詳しく学び、簡単な戦略でその使い方を学びます。深く学ぶことで、より多くの洞察得ることができ、それをよりよく活用することができるのです。


ストキャスティクスによる取引システムの設計方法を学ぶ
この記事では、学習シリーズを継続します。今回は、基本的な知識の新しいブロックを構築するために、最も人気があり、便利な指標の1つであるストキャスティックスオシレータ指標を使用して取引システムを設計する方法を学びます。