データサイエンスと機械学習(第02回):ロジスティック回帰
データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。
一からの取引エキスパートアドバイザーの開発(第11部):両建て注文システム
この記事では、両建て注文システムを作成します。先物契約は、トレーダーを極度に苦しめる資産タイプですが、なにがそんなに難しいのでしょうか。

MACDによる取引システムの設計方法を学ぶ
今回は、このシリーズの新しいツール、MACD(Moving Average Convergence Divergence、移動平均収束発散)に基づいた取引システムの設計方法について学びます。

CCIによる取引システムの設計方法を学ぶ
今回は、取引システムの設計方法を学ぶ連載の新しい記事として、CCI(商品チャンネル指数、Commodities Channel Index)を紹介し、その詳細を説明し、この指標に基づいた取引システムの作り方を紹介します。
一からの取引エキスパートアドバイザーの開発(第10部):カスタムインジケータへのアクセス
エキスパートアドバイザー(EA)でカスタムインジケータに直接アクセスするにはどうすればよいでしょうか。取引EAが本当に役立つのは、カスタムインジケータを使用できる場合のみです。それ以外の場合、取引EAはコードと命令のセットにすぎません。
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)
この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
一からの取引エキスパートアドバイザーの開発(第7部):価格別出来高の追加(I)
価格別出来高は、現存する最も強力なインジケータの1つです。ある程度の自信を持って取引するには、チャートにはこのインジケータが必須です。このインジケータはよく「テープリーディング」を好むトレーダーに使われますが、プライスアクションのみを使用して取引する場合にも活用できます。
単一チャート上の複数インジケータ(第06部):MetaTrader 5をRADシステムに変える(II)
前回の記事では、MetaTrader 5のオブジェクトを使ってChart Tradeを作成し、プラットフォームをRADシステムに変える方法を紹介しました。このシステムは非常によく機能しており、読者の多くは、提案されたシステムの機能を拡張できるようなライブラリを作成することをお考えになったのではないでしょうか。これに基づいて、より直感的で使い勝手の良いEAを開発することも可能でしょう。

モメンタムによるトレーディングシステムの設計方法を学ぶ
前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。
単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)
プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。

エンベロープによる取引システムの設計方法を学ぶ
この記事では、バンドで取引する方法の1つを紹介します。今回はエンベロープについて検討し、それに基づいてストラテジーを作成するのがいかに簡単であるかを見ていきます。

ボリンジャーバンドによる取引システムの設計方法を学ぶ
この記事では、取引の世界で最も人気のある指標の1つであるボリンジャーバンドについて学びます。テクニカル分析を検討し、ボリンジャーバンド指標に基づいてアルゴリズム取引システムを設計する方法を確認します。
単一チャート上の複数インジケータ(第04部): エキスパートアドバイザーに進む
以前の記事では、複数のサブウィンドウでインジケータを作成する方法を説明しました。これは、カスタムインジケータを使用するときに興味深いものになります。今回は、エキスパートアドバイザーに複数のウィンドウを追加する方法を説明します。
エキスパートアドバイザーが失敗する理由の分析
この記事では、通貨データの分析を示して、エキスパートアドバイザーが特定の時間領域で良好なパフォーマンスを示し他の領域でパフォーマンスが低下する理由をよりよく理解します。

さまざまな移動平均システムを設計する方法を学ぶ
この記事の主題である移動平均自体を使用する場合でも、任意のストラテジーに基づいて生成されたシグナルをフィルタリングするために使用できるストラテジーはたくさんあります。この記事の目的は、移動平均ストラテジーのいくつかと、アルゴリズム取引システムを設計する方法を共有することです。
アルゴリズム取引システムを設計する理由と方法を学ぶ
この記事では、MQL5のいくつかの基本に言及した後で、単純なアルゴリズム取引システムを設計することによって初心者がアルゴリズム取引システム(エキスパートアドバイザー)を設計するためのMQLの基本を示します。
MQL5の行列とベクトル
特別な「matrix」と「vector」データ型を使用すると、数学表記に非常に近いコードを作成することができます。行列とベクトルのメソッドを使用すると、計算でネストされたループを作成したり配列で正しいインデックスを作成したりする必要がなくなるため、複雑なプログラムの開発における信頼性と速度が向上します。
固定プライスアクションストップロスまたは固定RSI(スマートストップロス)
ストップロスは、取引における資金管理に関する主要なツールです。ストップロス、テイクプロフィット、ロットサイズを効果的に使用することで、トレーダーは取引の一貫性を改善し、全体的に収益性を高めることができます。ストップロスは優れたツールですが、使用時に課題に遭遇することがあります。主要なものはストップロスハントです。この記事では、取引でのストップロスハントを減らす方法と、従来のストップロスの使用法と比較して収益性を判断する方法について説明します。

MetaTrader用の高度なEAコンストラクター - BotBrains.app
この記事では、自動売買ロボットのためのノーコード開発プラットフォームであるBotBrains.appの機能を紹介します。自動売買ロボットを作成するために、コードを書く必要はありません。必要なブロックをスキームにドラッグアンドドロップし、パラメータを設定して、それらの間の接続を確立するだけです。
MQL言語を使用したゼロからのディープニューラルネットワークプログラミング
この記事は、MQL4/5言語を使用してディープニューラルネットワークを最初から作成する方法を読者に教えることを目的としています。
時間の取扱い(第1部):基本
時間の処理、証券会社のオフセット、夏時間または冬時間への変更を簡素化および明確化する関数とコードスニペット。正確なタイミングは取引において重要な要素になることがあります。現在時刻でロンドンやニューヨークの証券取引所がすでに開いているかまだ開いていないか、外国為替取引の取引時間はいつ開始および終了するかなどです。手動で取引して生活しているトレーダーにとって、これは大きな問題ではありません。

より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと
この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。

DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。

DoEasyライブラリのグラフィックス(第75部): 基本的なグラフィック要素でプリミティブとテキストを処理するメソッド
本稿では引き続き、CCanvas標準ライブラリクラスを使用したすべてのライブラリグラフィカルオブジェクトの基本的なグラフィック要素クラスを開発します。グラフィカルプリミティブを描画するメソッドとグラフィック要素オブジェクトにテキストを表示するメソッドを作成します。

DoEasyライブラリのグラフィックス(第74部): CCanvasクラスを使用した基本的グラフィック要素
本稿では、前の記事からのグラフィカルオブジェクトを構築するという概念を作り直し、標準ライブラリCCanvasクラスを利用したライブラリのすべてのグラフィカルオブジェクトの基本クラスを準備します。

DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト
本稿からは、ライブラリでのグラフィックの使用に関する新しい大きなセクションを始めます。本稿では、マウスステータスオブジェクト、すべてのグラフィック要素の基本オブジェクト、およびライブラリのグラフィック要素のフォームオブジェクトのクラスを作成します。

パターンと例(第I部): マルチトップ
これは、アルゴリズム取引の枠組みにおける反転パターンに関連する連載の最初の記事です。まず、最も興味深いパターンファミリーから始めます。これは、ダブルトップパターンとダブルボトムパターンに由来するものです。

DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録
本稿では、チャートオブジェクトクラスとそのコレクションの操作を完成します。また、チャートプロパティとそのウィンドウの変更の自動追跡を実装し、オブジェクトプロパティに新しいパラメータを保存します。このような変更により、を将来チャートコレクション全体のイベント機能実装できるようになります。

DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント
本稿では、いくつかのチャートオブジェクトイベント(銘柄チャートとチャートサブウィンドウの追加/削除、およびチャートウィンドウの指標の追加/削除/変更)を追跡する機能を作成します。

スワップ(第I部):ロックと合成ポジション
この記事では、スワップ取引手法の古典的な概念を拡張しようとします。私が、この概念に特別な注意を払う価値があり、この概念が研究に絶対的に推奨されるという結論に達した理由を説明します。

DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。

DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。

ニューラルネットワークが簡単に(第13回): Batch Normalization
前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。

ニューラルネットワークが簡単に(第12回): ドロップアウト
ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。

DoEasyライブラリでのその他のクラス(第67部): チャットオブジェクトクラス
本稿では、(単一の取引製品チャートの)チャートオブジェクトクラスを作成し、MQL5シグナルオブジェクトのコレクションクラスを改善して、コレクションに格納されている各シグナルオブジェクトでリストの更新時にすべてのパラメータが更新されるようにします。

ニューラルネットワークが簡単に(第11部): GPTについて
GPT-3は現在存在する言語ニューラルネットワークの中でおそらく最も高度なモデルの1つであり、その最大バリアントには1,750億個のパラメータが含まれています。もちろん、家庭にあるようなPCでそのような怪物を作成するつもりはありませんが、どのアーキテクチャソリューションを作業に使用し、それらからどのように利益を得ることができるかは確認することができます。