
Patrones de diseño en MQL5 (Parte 2): Patrones estructurales
En este artículo, seguiremos estudiando los patrones de diseño que permiten a los desarrolladores crear aplicaciones extensibles y fiables no solo en MQL5, sino también en otros lenguajes de programación. Esta vez hablaremos de un tipo diferente: los patrones estructurales. Asimismo, aprenderemos a diseñar sistemas usando las clases disponibles para formar estructuras mayores.

Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)
A pesar de no saber programar, muchas personas son bastante creativas y tienen grandes ideas, pero la falta de conocimientos o de entendimiento sobre la programación les impide hacer algunas cosas. Aprenda a crear un Chart Trade, pero utilizando la propia plataforma MT5, como si fuera un IDE.

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic
Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.


Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple
En el artículo, comenzaremos a mejorar los objetos de búfer de indicador y la clase de colección de búferes para trabajar en los modos de periodo y símbolo múltiples. Asimismo, analizaremos el funcionamiento de los objetos de búfer para obtener y mostrar los datos desde cualquier marco temporal en el gráfico actual del símbolo actual.

Desarrollando un canal de Donchian personalizado con la ayuda de MQL5
Existen muchas herramientas técnicas que se pueden usar para visualizar los canales de precios. Una de esas herramientas es el canal de Donchian. En este artículo, aprenderemos cómo crear un canal de Donchian, y también a usarlo como indicador personalizado dentro de un asesor experto.

Redes neuronales: así de sencillo (Parte 83): Algoritmo de convertidor espacio-temporal de atención constante (Conformer)
El algoritmo de Conformer que le mostraremos hoy se desarrolló para la previsión meteorológica, una esfera del saber que, por su constante variabilidad, puede compararse con los mercados financieros. El Conformer es un método completo que combina las ventajas de los modelos de atención y las ecuaciones diferenciales ordinarias.

Redes neuronales: así de sencillo (Parte 19): Reglas asociativas usando MQL5
Continuamos con el tema de la búsqueda de reglas asociativas. En el artículo anterior, vimos los aspectos teóricos de este tipo de problemas. En el presente artículo, mostraremos la implementación del método FP-Growth usando MQL5. Y también pondremos a prueba nuestra aplicación con datos reales.

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)
En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.

Teoría de categorías en MQL5 (Parte 8): Monoides
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí presentamos los monoides como un dominio (conjunto) que distingue la teoría de categorías de otros métodos de clasificación de datos al incluir reglas y un elemento de identidad.

Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización
En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.

Redes neuronales: así de sencillo (Parte 33): Regresión cuantílica en el aprendizaje Q distribuido
Continuamos explorando el aprendizaje Q distribuido. Hoy analizaremos este enfoque desde un ángulo diferente. Vamos a hablar de la posibilidad de utilizar la regresión cuantílica para resolver el problema de la previsión de los movimientos de precio.

Redes neuronales: así de sencillo (Parte 84): Normalización reversible (RevIN)
Hace tiempo que sabemos que el preprocesamiento de los datos de origen desempeña un papel fundamental en la estabilidad del entrenamiento de los modelos. Y para el procesamiento en línea de datos de origen "brutos" solemos utilizar una capa de normalización por lotes. Pero a veces tenemos que invertir el procedimiento. En este artículo analizaremos un posible enfoque para resolver este tipo de problemas.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram
En este artículo, creamos un Asesor Experto (EA) en MQL5 para enviar mensajes a Telegram usando un bot. Configuramos los parámetros necesarios, incluido el token de API del bot y el ID de chat, y luego realizamos una solicitud HTTP POST para entregar los mensajes. Posteriormente, gestionamos la respuesta para garantizar una entrega exitosa y solucionar cualquier problema que surja en caso de falla. Esto garantiza que enviemos mensajes desde MQL5 a Telegram a través del bot creado.

Arbitraje estadístico con predicciones
Daremos un paseo por el arbitraje estadístico, buscaremos con Python símbolos de correlación y cointegración, haremos un indicador para el coeficiente de Pearson y haremos un EA para operar arbitraje estadístico con predicciones hechas con Python y modelos ONNX.

Gradient boosting en el aprendizaje de máquinas transductivo y activo
En este artículo, el lector podrá familiarizarse con los métodos de aprendizaje automático activo basados en datos reales, descubriendo además cuáles son sus ventajas y desventajas. Puede que estos métodos terminen por ocupar un lugar en su arsenal de modelos de aprendizaje automático. El término transducción fue introducido por Vladímir Naúmovich Vápnik, el inventor de la máquina de vectores de soporte (SVM).


Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VI): Eventos en la cuenta con compensación
En anteriores artículos comenzamos a crear una gran biblioteca multiplataforma cuyo objetivo es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En la quinta parte, hemos creado las clases de los eventos comerciales y la colección de eventos desde donde se envían los eventos a la objeto de la biblioteca Engine y al gráfico del programa de control. En esta parte de la descripción, vamos a añadir la posibilidad de trabajar con la biblioteca en las cuentas de tipo compensación.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador
Por asesor multidivisa en este artículo entendemos un asesor, o un robot comercial que puede operar (abrir/cerrar órdenes, gestionar órdenes como Trailing Stop Loss y Trailing Profit) con más de un par de símbolos desde un gráfico. Esta vez usaremos un solo indicador, a saber, la media móvil triangular en uno o varios marcos temporales.

Desarrollo de un EA comercial desde cero (Parte 26): Rumbo al futuro (I)
Llevaremos nuestro sistema de órdenes al siguiente nivel, pero primero tenemos que resolver algunas cosas. Y es que ahora tenemos cuestiones que dependen de cómo queremos operar y de qué tipo de cosas hacemos durante la jornada de tráding.

Experimentos con redes neuronales (Parte 6): El perceptrón como herramienta autosuficiente de predicción de precios
Ejemplo de utilización de un perceptrón como herramienta autónoma de predicción de precios. En el artículo exploraremos los conceptos generales y veremos un sencillo asesor experto ya preparado, así como los resultados de su optimización.

Todo lo que necesita saber sobre la estructura de un programa MQL5
Cualquier programa en cualquier lenguaje de programación tiene una estructura determinada. En este artículo, aprenderá los componentes principales de la estructura de un programa en MQL5, que pueden resultarle muy útiles a la hora de crear un sistema comercial o una herramienta comercial para MetaTrader 5.

Aprendiendo a diseñar un sistema de trading con Bears Power Index
Bienvenidos a un nuevo artículo de la serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, hablaremos sobre el Bears Power Index y crearemos un sistema comercial basado en sus indicadores.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 2): Señales del indicador - Parabolic SAR de marco temporal múltiple
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. Esta vez usaremos solo un indicador, a saber, Parabolic SAR o iSAR en varios marcos temporales, comenzando desde PERIOD_M15 y terminando con PERIOD_D1.

Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)
Aquí pondremos realmente en práctica todos los conocimientos de esta serie. Finalmente construiremos un sistema 100% automático y funcional. Pero para hacer esto, tendrás que aprender una última cosa.

Cómo construir un EA que opere automáticamente (Parte 11): Automatización (III)
Un sistema automatizado sin seguridad no tendrá éxito. Sin embargo, la seguridad no se consigue sin entender bien algunas cosas. En este artículo, comprenderemos por qué es tan difícil lograr la máxima seguridad en los sistemas automatizados.

Aprendizaje automático y Data Science (Parte 13): Analizamos el mercado financiero usando el análisis de componentes principales (ACP)
Hoy intentaremos mejorar cualitativamente el análisis de los mercados financieros utilizando el Análisis de Componentes Principales (ACP). Asimismo, aprenderemos cómo este método puede ayudarnos a identificar patrones ocultos en los datos, detectar tendencias ocultas del mercado y optimizar las estrategias de inversión. En este artículo veremos cómo el método de ACP aporta una nueva perspectiva al análisis de datos financieros complejos, ayudándonos a ver ideas que hemos pasado por alto con los enfoques tradicionales. ¿La aplicación del método ACP en estos mercados financieros ofrece una ventaja competitiva y ayuda a ir un paso por delante?

Redes neuronales: así de sencillo (Parte 18): Reglas asociativas
Como continuación de esta serie, hoy presentamos otro tipo de tarea relacionada con los métodos de aprendizaje no supervisado: la búsqueda de reglas asociativas. Este tipo de tarea se usó por primera vez en el comercio minorista para analizar las cestas de la compra. En este artículo, hablaremos de las posibilidades que ofrece el uso de dichos algoritmos en el trading.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 01): Primeros experimentos (I)
¿Qué te parece crear un sistema para estudiar el mercado cuando está cerrado o simular situaciones de mercado? Aquí iniciaremos una nueva secuencia de artículos para tratar este tema.

Redes neuronales: así de sencillo (Parte 85): Predicción multidimensional de series temporales
En este artículo presentaremos un nuevo método complejo de previsión de series temporales que combina armoniosamente las ventajas de los modelos lineales y los transformadores.

Trading bursátil con cuadrícula usando un asesor con órdenes stop pendientes en la Bolsa de Moscú (MOEX)
Hoy utilizaremos un enfoque comercial de cuadrícula con órdenes stop pendientes en un asesor experto en el lenguaje de estrategias comerciales MQL5 para MetaTrader 5 en la Bolsa de Moscú (MOEX). Al comerciar en el mercado, una de las estrategias más simples consiste en colocar una cuadrícula de órdenes diseñada para "atrapar" el precio del mercado.

Cómo construir un EA que opere automáticamente (Parte 13): Automatización (V)
¿Sabes lo que es un diagrama de flujo? ¿Sabes cómo utilizarlo? ¿Cree que los diagramas de flujo son sólo cosas de aprendiz de programador? Pues echa un vistazo a este artículo y aprende a trabajar con diagramas de flujo.

Desarrollando un EA comercial desde cero (Parte 21): Un nuevo sistema de órdenes (IV)
Finalmente el sistema visual funcionará... aún no del todo. Aquí terminaremos de hacer los cambios básicos, y no serán pocos, serán muchos, y todos ellos necesarios, y todo el trabajo será bastante interesante.

Desarrollo de un sistema de repetición (Parte 32): Sistema de órdenes (I)
De todas las cosas desarrolladas hasta ahora, esta, como seguramente también notarás y con el tiempo estarás de acuerdo, es la más desafiante de todas. Lo que tenemos que hacer es algo simple: hacer que nuestro sistema simule lo que hace un servidor comercial en la práctica. Esto de tener que implementar una forma de simular exactamente lo que haría el servidor comercial parece simple. Al menos en palabras. Pero necesitamos hacer esto de manera que, para el usuario del sistema de repetición/simulación, todo suceda de la manera más invisible o transparente posible.

Redes neuronales: así de sencillo (Parte 35): Módulo de curiosidad intrínseca (Intrinsic Curiosity Module)
Seguimos analizando los algoritmos de aprendizaje por refuerzo. Todos los algoritmos que hemos estudiado hasta ahora requerían la creación de una política de recompensas tal que el agente pudiera evaluar cada una de sus acciones en cada transición de un estado del sistema a otro, pero este enfoque resulta bastante artificial. En la práctica, existe cierto tiempo de retraso entre la acción y la recompensa. En este artículo, le sugerimos que se familiarice con un algoritmo de entrenamiento de modelos que puede funcionar con varios retrasos de tiempo desde la acción hasta la recompensa.

Practicando el desarrollo de estrategias de trading
En este artículo, intentaremos desarrollar nuestra propia estrategia de trading. Toda estrategia de trading debe basarse en algún tipo de ventaja estadística. Además, esta ventaja debería existir durante mucho tiempo.

Creación de un modelo de restricción de tendencia de velas (Parte 4): Personalización del estilo de visualización para cada onda de tendencias
En este artículo, exploraremos las capacidades del poderoso lenguaje MQL5 para dibujar varios estilos de indicadores en MetaTrader 5. También veremos los scripts y cómo pueden utilizarse en nuestro modelo.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 1): Señales basadas en ADX combinadas con Parabolic SAR
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, etc.) con más de un par de símbolos de un gráfico.

Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Uno siempre debe estar al tanto de lo que está haciendo un EA automatizado, y si se descarrila, eliminarlo lo más rápido posible del gráfico, para poner fin a lo que él estaba haciendo y evitar que las cosas se salgan de control.

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz
En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.

Programación orientada a objetos (OOP) en MQL5
Como desarrolladores, debemos aprender a crear y desarrollar software que sea reutilizable y flexible sin duplicar código, especialmente si tenemos diferentes objetos con comportamientos distintos. Esto se puede lograr fácilmente utilizando las técnicas y principios de la programación orientada a objetos. En este artículo le presentamos los conceptos básicos de la programación orientada a objetos en MQL5.

Comprobando la informatividad de distintos tipos de medias móviles
Todos conocemos la importancia de la media móvil para muchos tráders. Existen diferentes tipos de medias móviles que pueden resultar útiles en el trading. Vamos a echarles un vistazo y a hacer una sencilla comparación para ver cuál puede dar mejores resultados.