Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
preview
Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)

Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)

Los dos últimos artículos han considerado el algoritmo SAC (Soft Actor-Critic), que incorpora la regularización de la entropía en la función de la recompensa. Este enfoque equilibra la exploración del entorno y la explotación del modelo, pero solo es aplicable a modelos estocásticos. El presente material analizará un enfoque alternativo aplicable tanto a modelos estocásticos como deterministas.
preview
Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles

Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles

En el presente artículo intentaremos simplificar los conceptos tratados en esta serie centrándonos en solo un indicador, el más común y probablemente el más fácil de entender: la media móvil. También veremos el significado y las posibles aplicaciones de las transformaciones naturales verticales.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.
preview
Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Como resultado de las pruebas realizadas en artículos anteriores, hemos concluido que la optimalidad de la estrategia entrenada depende en gran medida de la muestra de entrenamiento utilizada. En este artículo, nos familiarizaremos con un método bastante sencillo y eficaz para seleccionar trayectorias para el entrenamiento de modelos.
preview
Patrones de diseño en MQL5 (Parte 4): Patrones conductuales 2

Patrones de diseño en MQL5 (Parte 4): Patrones conductuales 2

Este artículo concluye la serie sobre patrones de diseño en ingeniería de software. Ya hemos mencionado que existen tres tipos de patrones de diseño: de creación, estructurales y conductuales. Hoy perfeccionaremos los patrones conductuales restantes, que nos ayudarán a especificar la forma en que interactúan los objetos de manera que nuestro código sea limpio.
preview
Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Los modelos de aprendizaje automático son difíciles de interpretar, y entender por qué los modelos no se ajustan a nuestras expectativas puede ayudarnos mucho a conseguir, en última instancia, el resultado deseado al utilizar técnicas tan avanzadas. Sin un conocimiento exhaustivo del funcionamiento interno del modelo, podría resultar difícil encontrar fallos que degraden el rendimiento. De este modo, podremos dedicar tiempo a crear funciones que no afecten a la calidad de la previsión. La conclusión es que, por muy bueno que sea un modelo, nos perderemos todas sus grandes ventajas por culpa de nuestros propios errores. Afortunadamente, existe una solución sofisticada y bien diseñada que permite ver con claridad lo que sucede bajo el capó del modelo.
preview
Desarrollamos un asesor experto multidivisa (Parte 12): Gestor de riesgos como en las empresas de prop-trading

Desarrollamos un asesor experto multidivisa (Parte 12): Gestor de riesgos como en las empresas de prop-trading

Ya disponemos de un cierto mecanismo de control de la reducción en el asesor experto que estamos desarrollando. Pero este es de naturaleza probabilística, ya que se basa en resultados de pruebas sobre los datos históricos de los precios. Por lo tanto, las reducciones, aunque con una probabilidad pequeña, pueden superar a veces los valores máximos previstos. Vamos a intentar añadir un mecanismo que garantice el nivel de reducción especificado.
preview
Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos

Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos

Ya hemos puesto en marcha la primera fase del proceso de optimización automatizada. Para distintos símbolos y marcos temporales, realizamos la optimización utilizando varios criterios y almacenamos información sobre los resultados de cada pasada en la base de datos. Ahora vamos a seleccionar los mejores grupos de conjuntos de parámetros de entre los encontrados en la primera etapa.
preview
Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta

Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta

Mejorar el panel GUI de MQL5 con funciones dinámicas puede mejorar significativamente la experiencia comercial de los usuarios. Al incorporar elementos interactivos, efectos de desplazamiento y actualizaciones de datos en tiempo real, el panel se convierte en una herramienta poderosa para los traders modernos.
preview
Redes neuronales: así de sencillo (Parte 56): Utilizamos la norma nuclear para incentivar la exploración

Redes neuronales: así de sencillo (Parte 56): Utilizamos la norma nuclear para incentivar la exploración

La exploración del entorno en tareas de aprendizaje por refuerzo es un problema relevante. Con anterioridad, ya hemos analizado algunos de estos enfoques. Hoy le propongo introducir otro método basado en la maximización de la norma nuclear, que permite a los agentes identificar estados del entorno con un alto grado de novedad y diversidad.
preview
Cómo usar la API de datos JSON en sus proyectos MQL

Cómo usar la API de datos JSON en sus proyectos MQL

Imagina que puedes utilizar datos que no se encuentran en MetaTrader, solo obtienes datos de los indicadores mediante análisis de precios y análisis técnico. Ahora imagina que puedes acceder a datos que aumentarán tu poder comercial. Puede multiplicar la potencia del software MetaTrader si combina la salida de otro software, métodos de análisis macro y herramientas ultra avanzadas a través de los datos de la API. En este artículo, le enseñaremos cómo utilizar las API y le presentaremos servicios de datos API útiles y valiosos.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
preview
Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Este artículo le presentará los secretos de la alquimia algorítmica, introduciéndole con precisión las particularidades de los paisajes financieros. Asimismo, aprenderá cómo los bosques aleatorios transforman los datos en predicciones y le servirán de ayuda al navegar por las complejidades de los mercados financieros. Intentaremos identificar el papel de los bosques aleatorios en los datos financieros y comprobaremos si pueden ayudar a aumentar los beneficios.
preview
Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Tras optimizar una estrategia comercial, obtendremos conjuntos de parámetros en base a los cuales podremos crear varias instancias (ejemplares) de estrategias comerciales combinadas en un asesor experto. Antes lo hacíamos manualmente, pero ahora trataremos de automatizar el proceso
preview
Características del Wizard MQL5 que debe conocer (Parte 22): Redes generativas adversativas (RGAs) condicionales

Características del Wizard MQL5 que debe conocer (Parte 22): Redes generativas adversativas (RGAs) condicionales

Las redes generativas antagónicas son un emparejamiento de redes neuronales que se entrenan entre sí para obtener resultados más precisos. Adoptamos el tipo condicional de estas redes mientras buscamos una posible aplicación en la previsión de series de tiempo financieras dentro de una clase de señales expertas.
preview
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
preview
Redes neuronales: así de sencillo (Parte 86): Transformador en U

Redes neuronales: así de sencillo (Parte 86): Transformador en U

Continuamos nuestro repaso a los algoritmos de previsión de series temporales. En este artículo nos familiarizaremos con los métodos del Transformador en U.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte II)

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte II)

Hoy discutiremos sobre la integración funcional de Telegram para las notificaciones de indicadores de MetaTrader 5 utilizando el poder de MQL5, en asociación con Python y la API Telegram Bot. Lo explicaremos todo con detalle para que nadie se pierda ningún punto. Al finalizar este proyecto, habrá adquirido conocimientos valiosos para aplicar en sus proyectos.
preview
Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

En nuestros modelos, a menudo utilizamos varios algoritmos de atención. Y, probablemente, lo más frecuente es utilizar transformadores. Su principal desventaja es la necesidad de recursos. En este artículo, estudiaremos un nuevo algoritmo que puede ayudar a reducir los costes informáticos sin perder calidad.
preview
Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.
preview
Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

En este artículo, aplicamos un algoritmo de red neuronal relativamente complejo lanzado en 2023 llamado PatchTST para predecir la acción del precio durante las próximas 24 horas. Utilizaremos el repositorio oficial, haremos ligeras modificaciones, entrenaremos un modelo para EURUSD y lo aplicaremos para realizar predicciones futuras tanto en Python como en MQL5.
preview
Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

En los 2 últimos artículos nos hemos centrado en el método Decision Transformer, que modela las secuencias de acciones en el contexto de un modelo autorregresivo de recompensas deseadas. En el artículo de hoy, analizaremos otro algoritmo para optimizar este método.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
preview
Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.
preview
La teoría del caos en el trading (Parte 1): Introducción, aplicación a los mercados financieros e indicador de Lyapunov

La teoría del caos en el trading (Parte 1): Introducción, aplicación a los mercados financieros e indicador de Lyapunov

¿Puede aplicarse la teoría del caos a los mercados financieros? En este artículo analizaremos en qué se diferencian la teoría clásica del caos y los sistemas caóticos del concepto propuesto por Bill Williams.
preview
Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

AdaBoost, un potente algoritmo de refuerzo diseñado para elevar el rendimiento de sus modelos de IA. AdaBoost, abreviatura de Adaptive Boosting (refuerzo adaptativo), es una sofisticada técnica de aprendizaje por conjuntos que integra a la perfección los aprendices débiles, potenciando su fuerza predictiva colectiva.
preview
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
preview
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 3): Detección de cambios en las tendencias al utilizar este sistema

Creación de un modelo de restricción de tendencia de velas (Parte 3): Detección de cambios en las tendencias al utilizar este sistema

Este artículo explora cómo las noticias económicas, el comportamiento de los inversores y diversos factores pueden influir en los cambios de tendencia del mercado. Incluye un vídeo explicativo y procede incorporando código MQL5 a nuestro programa para detectar los cambios de tendencia, alertarnos y tomar las medidas oportunas en función de las condiciones del mercado. Este artículo se basa en otros anteriores de la serie.
preview
Características del Wizard MQL5 que debe conocer (Parte 02): Mapas de Kohonen

Características del Wizard MQL5 que debe conocer (Parte 02): Mapas de Kohonen

Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
preview
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
preview
Redes neuronales: así de sencillo (Parte 53): Descomposición de la recompensa

Redes neuronales: así de sencillo (Parte 53): Descomposición de la recompensa

Ya hemos hablado más de una vez de la importancia de seleccionar correctamente la función de recompensa que utilizamos para estimular el comportamiento deseado del Agente añadiendo recompensas o penalizaciones por acciones individuales. Pero la cuestión que sigue abierta es el descifrado de nuestras señales por parte del Agente. En este artículo hablaremos sobre la descomposición de la recompensa en lo que respecta a la transmisión de señales individuales al Agente entrenado.
preview
Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Continuamos analizando las transformaciones naturales considerando la inducción cuadrática de la naturalidad. Pequeñas restricciones en la implementación de las capacidades multidivisa para los asesores ensamblados usando el wizard MQL5 significan que estamos demostrando nuestras capacidades en la clasificación de datos usando un script. Las principales áreas de aplicación son la clasificación de las variaciones de precios y, como consecuencia, su previsión.
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada

Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada

Al trabajar con series temporales, siempre utilizamos los datos de origen en su secuencia histórica. Pero, ¿es ésta la mejor opción? Existe la opinión de que cambiar la secuencia de los datos de entrada mejorará la eficacia de los modelos entrenados. En este artículo te invito a conocer uno de los métodos para optimizar la secuencia de entrada.
preview
Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)

Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)

En este artículo concluiremos la primera fase de la construcción. Aunque será algo relativamente rápido, explicaré detalles que quizás no se comentaron anteriormente. Pero aquí explicaré algunas cosas que mucha gente no entiende por qué son como son. Uno de estos casos es el del ratón. ¡¡¡¿Sabes por qué tienes que pulsar la tecla Shift o Ctrl en tu teclado?!!!
preview
Patrones de diseño en MQL5 (Parte 3): Patrones conductuales 1

Patrones de diseño en MQL5 (Parte 3): Patrones conductuales 1

En el nuevo artículo de la serie sobre patrones de diseño, nos ocuparemos de los patrones conductuales para comprender cómo crear de forma eficaz métodos de interacción entre los objetos creados. Diseñando estos patrones conductuales, podremos entender cómo construir software reutilizable, extensible y comprobable.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte III)

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte III)

Esta parte de la serie de artículos está dedicada a la integración de WhatsApp con MetaTrader 5 para las notificaciones. Hemos incluido un diagrama de flujo para simplificar la comprensión y analizaremos la importancia de las medidas de seguridad en la integración. El objetivo principal de los indicadores es simplificar el análisis mediante la automatización, y deben incluir métodos de notificación para alertar a los usuarios cuando se cumplan determinadas condiciones. Descubra más en este artículo.
preview
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.