有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 68 部分):离线优先引导政策优化

神经网络变得简单(第 68 部分):离线优先引导政策优化

自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。
preview
神经网络变得轻松(第五十部分):软性扮演者-评价者(模型优化)

神经网络变得轻松(第五十部分):软性扮演者-评价者(模型优化)

在上一篇文章中,我们实现了软性扮演者-评论者算法,但未能训练出一个可盈利的模型。在此,我们将优化先前创建的模型,以期获得所需的结果。
preview
神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)

神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)

在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。
preview
Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。
preview
MQL5中的范畴论(第20部分):自我注意的迂回与转换

MQL5中的范畴论(第20部分):自我注意的迂回与转换

我们暂时离开我们的系列文章,考虑一下 chatGPT 中的部分算法。有没有从自然变换中借鉴的相似之处或概念?我们尝试用信号类格式的代码,在一篇有趣的文章中回答这些和其他问题。
preview
您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对

您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对

“K-均值”聚类采用数据点分组的方式,该过程最初侧重于数据集的宏观视图,使用随机生成的聚类质心,然后放大并调整这些质心,从而准确表示数据集。我们将对此进行研究,并开拓一些它的用例。
preview
神经网络变得轻松(第五十三部分):奖励分解

神经网络变得轻松(第五十三部分):奖励分解

我们已经不止一次地讨论过正确选择奖励函数的重要性,我们通过为单独动作添加奖励或惩罚来刺激代理者的预期行为。但是关于由代理者解密我们的信号的问题仍旧悬而未决。在本文中,我们将探讨将单独信号传输至已训练代理者时的奖励分解。
preview
神经网络变得简单(第 60 部分):在线决策转换器(ODT)

神经网络变得简单(第 60 部分):在线决策转换器(ODT)

最近两篇文章专门介绍了决策转换器方法,其在期望奖励的自回归模型境况下针对动作序列进行建模。在本文中,我们将研究该方法的另一种优化算法。
preview
利用 Python 和 MQL5 构建您的第一个玻璃盒模型

利用 Python 和 MQL5 构建您的第一个玻璃盒模型

如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。
preview
时间序列挖掘的数据标签(第3部分):使用标签数据的示例

时间序列挖掘的数据标签(第3部分):使用标签数据的示例

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。
preview
神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

在上一篇文章中,我们概述了 DDPG 方法,它允许在连续动作空间中训练模型。然而,与其它 Q-学习方法一样,DDPG 容易高估 Q-函数的数值。这个问题往往会造成训练代理者时选择次优策略。在本文中,我们将研究一些克服上述问题的方式。
preview
使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

本文中的多币种 EA 是智能交易系统或交易机器人,能从一个品种的图表里交易(开单、平单、及管理订单,例如:尾随止损和止盈)多个品种(货币对)。这次我们只会用到 1 个指标,即多时间帧或单一时间帧中的三角移动平均线。
preview
软件开发和 MQL5 中的设计范式(第一部分):创建范式

软件开发和 MQL5 中的设计范式(第一部分):创建范式

有一些方法可以用来解决许多重复性的问题。一旦明白如何运用这些方法,就可助您有效地创建软件,并贯彻 DRY(不要重复自己)的概念。在这种境况下,设计范式的主题就非常好用,因为它们为恰当描述过,且重复的问题提供了解决方案。
preview
神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。
preview
神经网络变得轻松(第四十九部分):软性扮演者-评价者

神经网络变得轻松(第四十九部分):软性扮演者-评价者

我们继续讨论解决连续动作空间问题的强化学习算法。在本文中,我将讲演软性扮演者-评论者(SAC)算法。SAC 的主要优点是拥有查找最佳策略的能力,不仅令预期回报最大化,而且拥有最大化的动作熵(多样性)。
preview
软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1

软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1

来自设计范式文献的一篇新文章,我们将看到类型其一,即行为范式,从而理解我们如何有效地在所创建对象之间构建通信方法。通过完成这些行为范式,我们就能够理解创建和构建可重用、可扩展、经过测试的软件。
preview
在 MQL5 中创建做市商算法

在 MQL5 中创建做市商算法

做市商是如何运作的?让我们探讨一下这个问题,创建一个初级的做市商算法。
preview
MQL5 中的范畴论 (第 17 部分):函子与幺半群

MQL5 中的范畴论 (第 17 部分):函子与幺半群

本文是我们系列文章的最后一篇,将函子作为一个主题来讨论,且把幺半群作为一个范畴来重新审视。幺半群已在我们的系列中多次讲述,于此配合多层感知器帮助确定持仓规模。
preview
构建和测试 Aroon 交易系统

构建和测试 Aroon 交易系统

在本文中,我们将学习在了解了 Aroon 指标(阿隆指标)的基础知识和基于该指标构建交易系统的必要步骤之后,如何构建 Aroon 交易系统。建立这个交易系统后,我们将对其进行测试,看看它是否能盈利,还是需要进一步优化。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 3 部分):添加交易品种、前缀和/或后缀、以及交易时段

如何利用 MQL5 创建简单的多币种智能交易系统(第 3 部分):添加交易品种、前缀和/或后缀、以及交易时段

若干交易员同事发送电子邮件或评论了如何基于经纪商提供的名称里带有前缀和/或后缀的品种使用此多币种 EA,以及如何在该多币种 EA 上实现交易时区或交易时段。
preview
神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)

神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)

在本文中,我们将领略一种算法,其使用封闭式政策改进运算器来优化离线模式下的智能体动作。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
神经网络变得简单(第 56 部分):利用核范数推动研究

神经网络变得简单(第 56 部分):利用核范数推动研究

强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。
preview
MQL5 中的定量分析:实现有前途的算法

MQL5 中的定量分析:实现有前途的算法

我们将分析什么是定量分析,以及主要参与者如何运用定量分析的问题。我们将用 MQL5 语言创建一种定量分析算法。
preview
开发回放系统(第31部分):EA交易项目——C_Mouse类(五)

开发回放系统(第31部分):EA交易项目——C_Mouse类(五)

我们需要一个计时器,它可以显示距离回放/模拟运行结束还有多少时间。乍一看,这可能是一个简单快捷的解决方案。许多人只是尝试适应并使用交易服务器使用的相同系统。但有一件事是很多人在考虑这个解决方案时没有考虑的:对于回放,甚至更多的是模拟,时钟的工作方式不同。所有这些都使创建这样一个系统变得复杂。
preview
为智能系统制定品质因数

为智能系统制定品质因数

在本文中,我们将见识到如何制定一个品质得分,并由您的智能系统从策略测试器返回。 我们将查看两种著名的计算方法 — Van Tharp 和 Sunny Harris。
preview
神经网络变得简单(第 59 部分):控制二分法(DoC)

神经网络变得简单(第 59 部分):控制二分法(DoC)

在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
preview
神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

在此,我将研究相当新颖的随机边际扮演者-评论者(SMAC)算法,该算法允许在熵值最大化的框架内构建潜在变量政策。
preview
软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2

软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2

在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。
preview
开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)

开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)

在改进了C_Mouse类之后,我们可以专注于创建一个类,该类旨在为我们的分析创建一个全新的框架。我们不会使用继承或多态性来创建这个新类。相反,我们将改变,或者更好地说,在价格线中添加新的对象。这就是我们在这篇文章中要做的。在下一节中,我们将研究如何更改分析。所有这些都将在不更改C_Mouse类的代码的情况下完成。实际上,使用继承或多态性会更容易实现这一点。然而,还有其他方法可以达到同样的结果。
preview
MQL5 简介(第 4 部分):掌握结构、类和时间函数

MQL5 简介(第 4 部分):掌握结构、类和时间函数

在我们的最新文章中揭开 MQL5 编程的秘密!深入了解结构、类和时间函数的基本要素,为您的编码之旅赋能。无论您是初学者还是经验丰富的开发人员,我们的指南都简化了复杂的概念,为掌握 MQL5 提供了宝贵的见解。提升你的编程技能,在算法交易领域保持领先!
preview
MQL5 中的组合对称交叉验证

MQL5 中的组合对称交叉验证

在本文中,我们介绍使用纯 MQL5 语言实现组合对称交叉验证的情况,以衡量使用策略测试器的慢速完全算法优化策略后可能出现的过拟合程度。
preview
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
开发多币种 EA 交易(第 4 部分):虚拟挂单和保存状态

开发多币种 EA 交易(第 4 部分):虚拟挂单和保存状态

在开始开发多币种 EA 后,我们已经取得了一些成果,并成功地进行了多次代码改进迭代。但是,我们的 EA 无法处理挂单,也无法在终端重启后恢复运行。让我们添加这些功能。
preview
CatBoost 模型中的交叉验证和因果推理基础及导出为 ONNX 格式

CatBoost 模型中的交叉验证和因果推理基础及导出为 ONNX 格式

本文提出了使用机器学习创建 EA 交易的方法。
preview
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
preview
MQL5 简介(第 5 部分):MQL5 数组函数入门指南

MQL5 简介(第 5 部分):MQL5 数组函数入门指南

在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!
preview
您应当知道的 MQL5 向导技术(第 11 部分):数字墙

您应当知道的 MQL5 向导技术(第 11 部分):数字墙

数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。