Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.
preview
Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Матрица служит основой алгоритмов машинного обучения и компьютеров в целом из-за ее способности эффективно обрабатывать большие математические операции. В Стандартной библиотеке есть все, что нужно, но мы можем расширить ее, добавив несколько функций в файл utils.
preview
Теория категорий в MQL5 (Часть 2)

Теория категорий в MQL5 (Часть 2)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)

Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)

Алгоритм растущих деревьев (Saplings Sowing and Growing up, SSG) вдохновлен одним из самых жизнестойких организмов на планете, который является замечательным образцом выживания в самых различных условиях.
preview
Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.
preview
Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова

Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова

Цепи Маркова — это мощный математический инструмент, который можно использовать для моделирования и прогнозирования данных временных рядов в различных областях, включая финансы. При моделировании и прогнозировании финансовых временных рядов цепи Маркова часто используются для моделирования эволюции финансовых активов с течением времени, таких как цены акций или обменные курсы. Одними из основных преимуществ моделей цепей Маркова являются их простота и удобство использования.
preview
Алан Эндрюс и его приемы анализа временных рядов

Алан Эндрюс и его приемы анализа временных рядов

Алан Эндрюс — один из известнейших "просветителей" современного мира в области трейдинга. Его "вилы" включены практически во все современные программы анализа котировок. Но большинство трейдеров не используют и пятой части тех возможностей, что заложены в этом инструменте. А оригинальный курс Эндрюса включает описание не только вил (хотя они всё же главные), но и некоторых других полезных прямых. Эта статья даёт представление о тех изумительных техниках анализа графиков, которым учил Эндрюс в своем оригинальном курсе. Осторожно, много картинок.
preview
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
preview
Теория категорий в MQL5 (Часть 1)

Теория категорий в MQL5 (Часть 1)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Основа стратегии поиска пищи бактерией E.coli (кишечная палочка) вдохновила ученых на создание алгоритма оптимизации BFO. Алгоритм содержит оригинальные идеи и перспективные подходы к оптимизации и достоин дальнейшего изучения.
preview
Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Удивительная способность сорняков выживать в самых разнообразных условиях послужило идеей создания мощного алгоритма оптимизации. IWO — один из лучших среди рассмотренных ранее.
preview
Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.
preview
Машинное обучение и Data Science (Часть 9): Алгоритм k-ближайших соседей (KNN)

Машинное обучение и Data Science (Часть 9): Алгоритм k-ближайших соседей (KNN)

Это ленивый алгоритм, который не учится на обучающей выборке, а хранит все доступные наблюдения и классифицирует данные сразу же, как только получает новую выборку. Несмотря на простоту, этот метод используется во множестве реальных приложений.
Горная карта, или График "Айсберг"
Горная карта, или График "Айсберг"

Горная карта, или График "Айсберг"

Как вам идея добавить новый тип графика в платформу MetaTrader 5? Многие говорят, что в ней не хватает несколько вещей, которые есть в других платформах. Но на самом деле MetaTrader 5 — очень практичная платформа, которая позволяет делать то, что невозможно сделать во многих других платформах, или по крайней мере, в них это сделать не так легко.
preview
Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.
preview
Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.
preview
Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия

Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия

Полиномиальная регрессия — это гибкая модель, предназначенная для эффективного решения задач, с которыми не справляется модель линейной регрессии. В этой статье узнаем, как создавать полиномиальные модели на MQL5 и извлекать из них выгоду.
preview
Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)

Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)

Рассмотрим один из новейших современных алгоритмов оптимизации "Стаи серых волков". Оригинальное поведение на тестовых функциях делает этот алгоритм одним из самых интересных среди рассмотренных ранее. Один из лидеров для применения в обучении нейронных сетей, гладких функций с многими переменными.
preview
Разработка торгового советника с нуля (Часть 30): CHART TRADE теперь как индикатор?!

Разработка торгового советника с нуля (Часть 30): CHART TRADE теперь как индикатор?!

Сегодня мы снова будем использовать Chart Trade... но теперь как индикатор, который может присутствовать или не присутствовать на графике.
preview
Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
preview
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.
preview
Управление рисками и капиталом с помощью советников

Управление рисками и капиталом с помощью советников

Эта статья о том, чего вы не найдете в отчете о тестировании, чего следует ожидать при использовании советников, как управлять своими деньгами при использовании роботов и как покрыть значительный убыток, чтобы остаться в трейдинге при автоматизированной торговле.
preview
Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью

Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью

В предыдущей статье мы начали изучать нейросети с прямой связью, однако остались неразобранными некоторые моменты. Один из них — проектирование архитектуры. Поэтому в этой статье мы рассмотрим, как спроектировать гибкую нейронную сеть с учетом входных данных, количества скрытых слоев и узлов для каждой сети.
preview
Популяционные алгоритмы оптимизации: Муравьиная Колония (Ant Colony Optimization - ACO)

Популяционные алгоритмы оптимизации: Муравьиная Колония (Ant Colony Optimization - ACO)

В этот раз разберём алгоритм оптимизации Муравьиная Колония. Алгоритм очень интересный и неоднозначный. Попытка создания нового типа ACO.
preview
Машинное обучение и Data Science — Нейросети (Часть 01): Разбираем нейронные сети с прямой связью

Машинное обучение и Data Science — Нейросети (Часть 01): Разбираем нейронные сети с прямой связью

Многие любят, но немногие понимают все операции, лежащие в основе нейронных сетей. В этой статье я постараюсь простым языком объяснить все, что происходит за закрытыми дверями многоуровневого перцептрона с прямой связью Feed Forward.
preview
Популяционные алгоритмы оптимизации: Рой частиц (PSO)

Популяционные алгоритмы оптимизации: Рой частиц (PSO)

В данной статье рассмотрим популярный алгоритм "Рой Частиц" (PSO — particle swarm optimisation). Ранее мы обсудили такие важные характеристики алгоритмов оптимизации как сходимость, скорость сходимости, устойчивость, масштабируемость, разработали стенд для тестирования, рассмотрели простейший алгоритм на ГСЧ.
preview
Работа с матрицами и векторами в MQL5

Работа с матрицами и векторами в MQL5

Для решения математических задач в MQL5 были добавлены матрицы и векторы. Новые типы имеют встроенные методы для написания краткого и понятного кода, который близок к математической записи. Массивы — это хорошо, но матрицы во многих случаях лучше.
preview
Нейросети — это просто (Часть 27): Глубокое Q-обучение (DQN)

Нейросети — это просто (Часть 27): Глубокое Q-обучение (DQN)

Продолжаем изучение обучения с подкреплением. И в этой статье мы познакомимся с методом глубокого Q-обучения. Использование данного метода позволило команде DeepMind создать модель, способную превзойти человека при игре в компьютерные игры Atari. Думаю, будет полезно оценить возможности подобной технологии для решения задач трейдинга.
preview
Машинное обучение и Data Science (Часть 06): Градиентный спуск

Машинное обучение и Data Science (Часть 06): Градиентный спуск

Градиентный спуск играет важную роль в обучении нейронных сетей и различных алгоритмов машинного обучения — это быстрый и умный алгоритм. Однако несмотря на его впечатляющую работу, многие специалисты по данным все еще неправильно его понимают. Давайте в этой статье посмотрим, о чем идет речь.
preview
Нейросети — это просто (Часть 26): Обучение с подкреплением

Нейросети — это просто (Часть 26): Обучение с подкреплением

Продолжаем изучение методов машинного обучения. Данной статьей мы начинаем еще одну большую тему "Обучение с подкреплением". Данный подход позволяет моделям выстаивать определенные стратегии для решения поставленных задач. И мы рассчитываем, что это свойство обучения с подкреплением откроет перед нами новые горизонты построения торговых стратегий.
Рыночная математика: прибыль, убыток, издержки
Рыночная математика: прибыль, убыток, издержки

Рыночная математика: прибыль, убыток, издержки

В данной статье я покажу вам, как считать полную прибыль или убыток любого трейда, включая комиссию и своп. Составим точнейшую математическую модель, напишем по ней код и сравним ее с эталоном, а также попытаемся залезть под капот основной функции MQL5 для вычисления прибыли и докопаемся до сути всех необходимых величин из спецификации.
preview
Нейросети — это просто (Часть 25): Практикум Transfer Learning

Нейросети — это просто (Часть 25): Практикум Transfer Learning

В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
preview
Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис

Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис

Деревья решений классифицируют данные, имитируя то, каким образом размышляют люди. В этой статье посмотрим, как строить деревья и использовать их для классификации и прогнозирования данных. Основная цель алгоритма деревьев решений состоит в том, чтобы разделить выборку на данные с "примесями" и на "чистые" или близкие к узлам.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 1): Регрессионный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 1): Регрессионный анализ

Современный трейдер почти всегда сознательно или бессознательно находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. Этот исследовательский процесс требует много времени и сопряжен с ошибками. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера. Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.
Популяционные алгоритмы оптимизации
Популяционные алгоритмы оптимизации

Популяционные алгоритмы оптимизации

Вводная статья об алгоритмах оптимизации (АО). Классификация. В статье предпринята попытка создать тестовый стенд (набор функций), который послужит в дальнейшем для сравнения АО между собой, и, даже, возможно, выявления самого универсального алгоритма из всех широко известных.
preview
Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха

Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха

В этой статье я попытаюсь использовать нашу логистическую модель, чтобы спрогнозировать крах фондового рынка на основе главнейших акций для экономики США: NETFLIX и APPLE. Мы проанализируем эти акции, будем использовать информацию о предыдущих падениях рынка 2019 и 2020 годов. Посмотрим, как наша модель будет работать в нынешних мрачных условиях.
preview
Машинное обучение и Data Science (Часть 03): Матричная регрессия

Машинное обучение и Data Science (Часть 03): Матричная регрессия

В этот раз мы будем создавать модели с помощью матриц — они дают большую гибкость и позволяют создавать мощные модели, которые могут обрабатывать не только пять независимых переменных, но и множество других, насколько позволяют пределы вычислительных возможностей компьютера. Статья будет очень интересной, это точно.