MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
ギャップ ー 収入戦略か50/50か?
ギャップ ー 収入戦略か50/50か?

ギャップ ー 収入戦略か50/50か?

ギャップ現象の研究とは、前の時間枠の終値と次の時間の終値との間の有意差の状況や、日々のバーの向かう方向を分析することです。関数GetOpenFileNameのDLLシステムを使用します。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
MQL5レシピ - オープンヘッジポジションのプロパティを取得しましょう
MQL5レシピ - オープンヘッジポジションのプロパティを取得しましょう

MQL5レシピ - オープンヘッジポジションのプロパティを取得しましょう

MetaTrader 5プラットフォームでは、マルチマーケットだけでなく、さまざまなポジション計算システムの使用も可能です。このような機能は、取引アイデアの実装と形式化のためのツールを大幅に拡大します。この記事では、ポジションが独立してカウントされたとき(『ヘッジ』)のポジションのプロパティの処理と考慮の方法について説明します。派生クラスの提案と、ヘッジポジションのプロパティの処理と取得の例を提示します。
考えられる.EAをリアルタイムで最適化するためのインジケータの使用法
考えられる.EAをリアルタイムで最適化するためのインジケータの使用法

考えられる.EAをリアルタイムで最適化するためのインジケータの使用法

トレーディングロボットの効率は、そのパラメータの正しい選択 (最適化) に依存します。 ただし、ある特定の時間間隔で最適と見なされるパラメータは、別の期間でもその有効性を保持することはできません。 その上、EA がテストの期間で利益を出したとしてもリアルでは損失になることもあります。 継続的な最適化における問題はこれらを背景としています。 ルーチンワークに直面するとき、人は自動化する方法を模索しようとします。 この記事では、この問題を解決するための非標準的なアプローチを提案します。
リバーシング: 聖杯や危険な妄想?
リバーシング: 聖杯や危険な妄想?

リバーシング: 聖杯や危険な妄想?

この記事では、リバーシングマーチンゲール技術を研究し、トレード戦略を向上させることができるかどうかということはもちろん、使用する価値があるかどうかを判断します。 ヒストリカルデータを操作し、リバーシングテクニックに最適なインジケータを確認するEAを作成します。 また、独立したトレードシステムとしてのインジケータなしで使用できるかどうかもチェックします。 また、リバーシングが、負けトレードから勝ちトレードに変えられるかを確かめます。
エルダーレイ (ブルパワーとベアパワー)
エルダーレイ (ブルパワーとベアパワー)

エルダーレイ (ブルパワーとベアパワー)

この記事は、ブルパワー、ベアパワー、移動平均インジケータ (EMA-指数平均)に基づいたエルダーレイトレーディングシステムを扱います。 このシステムは、アレキサンダーエルダーの著書"Trading for a Living"に記述されています。
1. テストメソッド1トレンドとレンジ戦略の組み合わせ
1. テストメソッド1トレンドとレンジ戦略の組み合わせ

1. テストメソッド1トレンドとレンジ戦略の組み合わせ

トレード戦略には多くのものがあります。 トレードのために、ある戦略はトレンドを探し、またある戦略はレンジ価格変動の範囲を定義します。 この2つのアプローチを組み合わせて収益性を高めることは可能でしょうか。
10のレンジトレーディング戦略の比較分析
10のレンジトレーディング戦略の比較分析

10のレンジトレーディング戦略の比較分析

この記事はレンジ期間のトレードにおける利点および欠点について調査します。 この記事で作成およびテストされた10の戦略は、チャネル内の価格変動の追跡に基づいています。 各戦略は、ダマシの相場参入シグナルを回避することを目的としたフィルタリング機構を備えています。
MQL5.comフリーランスサービスが注文50,000件を達成
MQL5.comフリーランスサービスが注文50,000件を達成

MQL5.comフリーランスサービスが注文50,000件を達成

公式のMetaTraderフリーランスサービスのメンバー受注完了数が2018年10月に50,000件に達しました。これは、MQLプログラマー向けの世界最大のフリーランスサイトです。サイトには1,000人以上の開発者が登録しており、新規注文は毎日数十件を超えます。サイトは7ヶ国語に訳されています。
通貨ペアパターンのテスト: 実用的なアプリケーションと実際のトレードの視点 第4部
通貨ペアパターンのテスト: 実用的なアプリケーションと実際のトレードの視点 第4部

通貨ペアパターンのテスト: 実用的なアプリケーションと実際のトレードの視点 第4部

この記事では、トレーディング通貨ペアバスケットのシリーズに結論付けを行います。 ここでは、残りのパターンをテストし、実際のトレードでの適用について説明します。 相場におけるエントリーと決済、パターンを分析し、複合インジケータの使用を考察します。
14,000自動売買ロボットがMetaTraderマーケットに
14,000自動売買ロボットがMetaTraderマーケットに

14,000自動売買ロボットがMetaTraderマーケットに

最大級のアルゴリズム取引既成アプリストアでは13,970件の製品があります。これには4,800件のロボット、6,500件の指標、2,400件のユーティリティその他のソルーションが含まれます。半分以上のアプリケーション (6,000) はレンタルもできます。全製品の4分の1(3,800)は無料でダウンロードできます。
取引口座モニタリングは不可欠なトレーダーツールです。
取引口座モニタリングは不可欠なトレーダーツールです。

取引口座モニタリングは不可欠なトレーダーツールです。

取引口座モニタリングでは、完了したすべての取引に関する詳細なレポートが提供されます。すべての取引統計は自動的に収集され、わかりやすい図やグラフとして提供されます。
強化学習におけるランダム決定フォレスト
強化学習におけるランダム決定フォレスト

強化学習におけるランダム決定フォレスト

バギングを使用するランダムフォレスト(RF)は最も強力な機械学習方法の1つですが、グラジエントブースティングには若干劣ります。本稿では、市場との相互作用から得られた経験に基づいて意思決定を行う自己学習型取引システムの開発を試みます。
preview
トレードロボットをオーダーするための要件定義を作成する方法

トレードロボットをオーダーするための要件定義を作成する方法

自分自身のトレーディングストラテジーを使用してトレードしていますか。 システムトレードのルールをアルゴリズムとして正式に記述できる場合は、自動化されたEAにトレードを委託することをお勧めします。 ロボットは、人間の弱点であるところの睡眠や食品を必要としません。 この記事では、フリーランスのサービスでトレードロボットを発注する際の要件定義の作成方法を示します。
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する

ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する

この記事では、ビジュアルストラテジービルダーを紹介します。 ユーザーがプログラミングせずにトレードロボットやユーティリティを作成する方法について紹介します。 作成されたEAは、完全に機能し、ストラテジーテスターでテストすることができます。また、クラウドで最適化またはリアルタイムチャートでライブ実行することも可能です。
マルチモジュールEAの作成
マルチモジュールEAの作成

マルチモジュールEAの作成

MQLプログラミング言語によって、取引戦略のモジュール設計の概念を実装することができます。この記事では、別々にコンパイルされたファイルモジュールからなるマルチモジュールEAの作成例をご紹介します。
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

本稿では、様々な訓練の変形によって得られたディープニューラルネットワークのハイパーパラメータにベイズ最適化を適用する可能性について検討します。様々な訓練の変形における最適なハイパーパラメータを有するDNNの分類の質が比較されます。DNN最適ハイパーパラメータの有効性の深さは、フォワードテストで確認されています。分類の質を向上させるための方向性が特定されています。
MetaTrader 5における取引戦略最適化の可視化
MetaTrader 5における取引戦略最適化の可視化

MetaTrader 5における取引戦略最適化の可視化

本稿では、最適化プロセスの可視化を拡張するためのグラフィカルインターフェイスを備えたMQLアプリケーションが実装されます。グラフィカルインターフェイスには、EasyAndFastライブラリの最新バージョンが適用されます。MQLアプリケーションでグラフィカルインターフェイスが必要な理由は多くのユーザによって尋ねられることがあります。本稿では、トレーダーにとって有用な複数のケースの1つを示します。
ビンスによる資金管理 MQL5 ウィザードのモジュールとしての実装
ビンスによる資金管理 MQL5 ウィザードのモジュールとしての実装

ビンスによる資金管理 MQL5 ウィザードのモジュールとしての実装

この記事は、ラルフ·ビンスによる "The Mathematics of Money Management" に基づいています。 トレードロットの最適なサイズを見つけるために使用される経験的およびパラメトリックメソッドの説明をします。 また、それらのメソッドに基づいて MQL5 ウィザードのトレーディングモジュールの実装を行います。
トレーダーのリスクを低減するには
トレーダーのリスクを低減するには

トレーダーのリスクを低減するには

金融市場における取引には広範囲のリスクがつきもので、これらは取引システムのアルゴリズムで考慮されるべきです。そのようなリスクを低減することは、取引で利益を得るために最も重要な課題です。
通貨ペアバスケットをトレードするときに発生するパターンのテスト パート III
通貨ペアバスケットをトレードするときに発生するパターンのテスト パート III

通貨ペアバスケットをトレードするときに発生するパターンのテスト パート III

この記事では、通貨ペアバスケットのトレード時に検出可能なパターンのテストをします。 ここでは、通貨の動きを互いに相対的に追跡するパターンをテストします。
チャネルブレイクアウトパターン
チャネルブレイクアウトパターン

チャネルブレイクアウトパターン

価格トレンドは、金融銘柄チャートで観察できる価格チャネルを形成します。現在のチャネルのブレイクアウトは、強いトレンド反転シグナルの1つです。本稿では、そのようなシグナルを見つける手順を自動化し、チャネルブレイクアウトパターンを取引戦略の作成に使用できるかどうかを確認する方法を提案します。
エントリを指標によって分類する技術を用いた新たな取引戦略の作成
エントリを指標によって分類する技術を用いた新たな取引戦略の作成

エントリを指標によって分類する技術を用いた新たな取引戦略の作成

本稿では、個々の指標セットを組み立てることでカスタム取引戦略を作成するとともに、カスタム市場エントリシグナルを開発する技術を提案します。
トレードDiNapoliレベル
トレードDiNapoliレベル

トレードDiNapoliレベル

この記事では、MQL5 標準ツールを使用してDiNapoliレベルでトレードするためのEAの実現を考察します。 そのパフォーマンスをテストし、最終的な結論まで導きます。
アジアセッション中の夜間取引: どのように収益性を維持するか
アジアセッション中の夜間取引: どのように収益性を維持するか

アジアセッション中の夜間取引: どのように収益性を維持するか

この記事では、夜間取引の概念、および MQL5 におけるトレーディング戦略とその実装について扱います。 テストを通じ、適切な結論を下します。
モメンタムピンボールトレーディング戦略
モメンタムピンボールトレーディング戦略

モメンタムピンボールトレーディング戦略

この記事では、Linda B. RaschkeとLaurence A. Connors の "Street Smarts: High Probability Short-Term Trading Strategies" に記載されているトレーディングシステムのコードを記述します。 今回は、モメンタムのピンボールシステムを研究します。また、2つのインジケーター、トレードロボットとシグナルブロックの作成について説明します。
MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール
MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール

MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール

この記事では、NRTR インジケーターを分析し、このインジケーターに基づいてトレードシステムを作成します。 追加のトレンド確認インジケーターと NRTR の組み合わせに基づいて戦略を作成する際に使用することができるトレードシグナルのモジュールを開発します。
通貨ペアバスケットをトレードするときに発生するパターンのテスト パート2
通貨ペアバスケットをトレードするときに発生するパターンのテスト パート2

通貨ペアバスケットをトレードするときに発生するパターンのテスト パート2

通貨ペアバスケットをトレードするときに発生するパターンをテストし、トレード通貨ペアバスケットの記事で説明したメソッドを試していきます。 実際には、移動平均のクロスの複合 WPR チャートのパターンを使用できるかどうかを検討してみましょう。 もし使用できる場合は、適切な使用メソッドを検討する必要があります。
カルマンフィルタを用いた価格方向予測
カルマンフィルタを用いた価格方向予測

カルマンフィルタを用いた価格方向予測

トレードで成功するには、ノイズ変動と価格変動を分けることができるインジケーターが必要です。 この記事では、最も有望なデジタルフィルタ、カルマンフィルタを検討します。 フィルタを描画して使用する方法について説明します。
三角裁定
三角裁定

三角裁定

本稿では、良く使われる三角裁定取引方法についてお話しします。ここでは、可能な限り主題を分析し、戦略のプラスおよびマイナス側面を考察し、既製のエキスパートアドバイザーコードを開発します。
取引戦略におけるファジー論理
取引戦略におけるファジー論理

取引戦略におけるファジー論理

本稿では、ファジーライブラリを使用して、ファジー論理を適用した簡単な取引システムの構築例を検討します。ファジー論理、遺伝的アルゴリズムおよびニューラルネットワークを組み合わせることによりシステムを改良するための変形が提案されます。
古典的な隠れたダイバージェンスを解釈する新しいアプローチ
古典的な隠れたダイバージェンスを解釈する新しいアプローチ

古典的な隠れたダイバージェンスを解釈する新しいアプローチ

この記事は、ダイバージェンス構造の古典的なメソッドを考慮し、新しいダイバージェンスの解釈メソッドを提供します。 この新しい解釈法に基づいてトレード戦略を策定しました。 この戦略についても、この記事で説明します。
適応型相場の実用的評価法
適応型相場の実用的評価法

適応型相場の実用的評価法

この記事で提案するトレーディングシステムは、株価を分析するための数学的ツールです。 ディジタルフィルタリングと離散時系列のスペクトル推定を適用します。 戦略の理論的側面について説明し、テストEAを作成します。
トレードオブジェクト: メタトレーダーのグラフィカルオブジェクトに基づいたトレードの自動化
トレードオブジェクト: メタトレーダーのグラフィカルオブジェクトに基づいたトレードの自動化

トレードオブジェクト: メタトレーダーのグラフィカルオブジェクトに基づいたトレードの自動化

この記事では、チャートのリニアマークアップに基づいて自動トレーディングシステムを作成するための簡単なアプローチを扱います。MetaTrader4 およびMetaTrader5のオブジェクトの標準プロパティを使用して既製EAを提供し、トレードオペレーションをサポートしています。
通貨ペアバスケットをトレードするときに発生するパターンのテスト。 パート I
通貨ペアバスケットをトレードするときに発生するパターンのテスト。 パート I

通貨ペアバスケットをトレードするときに発生するパターンのテスト。 パート I

パターンのテストを開始し、トレード通貨ペアバスケットについての記事に記載されているメソッドを試してみます。 売られ過ぎ/買われ過ぎレベルのパターンが実際に適用されるメソッドを見てみましょう。
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測

ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測

本稿では、ベイズの定理に基づいた特異スペクトル解析(SSA)と重要な機械学習法の予測機能を組み合わせて、時間効率の良い取引のための推奨システムを構築するというイデオロギーと方法論について検討します。
ディナポリ取引システム
ディナポリ取引システム

ディナポリ取引システム

本稿では、ジョー・ディナポリによって開発されたフィボレベルベースの取引システムについて説明します。システムの背後にあるアイデアと主なコンセプトが説明され、それらをさらに明確にする、シンプルな指標が例として示されます。
人工知能を用いたTDシーケンシャル(トーマス デマークのシーケンシャル)
人工知能を用いたTDシーケンシャル(トーマス デマークのシーケンシャル)

人工知能を用いたTDシーケンシャル(トーマス デマークのシーケンシャル)

本稿では、よく知られている戦略とニューラルネットワークを融合させた成功裡の取引方法を説明します。これは、人工知能システムを用いたトーマス デマークのシーケンシャル戦略に関するもので、「セットアップ」シグナルと「インターセクション」シグナルを使用して、戦略の最初の部分のみが適用されます。
ドンチャンチャネルを使った取引
ドンチャンチャネルを使った取引

ドンチャンチャネルを使った取引

本稿では、さまざまなフィルタを使用してドンチャンチャネルに基づいているいくつかの戦略を開発してテストします。それらの操作の比較分析も実行します。
10のトレンド戦略による比較分析
10のトレンド戦略による比較分析

10のトレンド戦略による比較分析

この記事では、10のトレンドのテスト結果と比較分析の概要を説明します。 得られた結果に基づいて、トレンドの妥当性、メリット、デメリットについて一般的な結論を導きます。