取引における機械学習に関する記事

icon

AIベースの取引ロボットの作成: ネイティブPythonとの統合行列とベクトル数学と統計のライブラリなど

取引に機械学習を使用する方法をご覧ください。ニューロン、パーセプトロン、畳み込みネットワークと再帰型ネットワーク、予測モデルなどの基本から始めて、独自のAIの開発に取り組みます。金融市場でのアルゴリズム取引のためにニューラル ネットワークを訓練して適用する方法を学びます。

新しい記事を追加
最新 | ベスト
第三世代ニューラルネットワーク:深層ネットワーク
第三世代ニューラルネットワーク:深層ネットワーク

第三世代ニューラルネットワーク:深層ネットワーク

本稿ではマシン学習の新しい視点方向-深層学習、より正確には深いニューラルネットワークについてお話します。第二世代のニューラルネットワークについて、その連携のアーキテクチャと主なタイプ、メソッド、学習ルール、主な欠点とそれに続き第三世代の開発とその主要タイプ、特殊性、トレーニング方法について簡単に再検討しています。実データについて集積されたオートエンコーダのウェイトによって開始される深いニューラルネットワークの構築とトレーニングにおける実践的実験を行います。入力データを選択するところから行列偏差までの全段階について詳細にお話します。本稿最終部分は MQL4/R を基にした内蔵インディケータを持つ Expert Advisor での深いニューラルネットワークのソフトウェア実装です。
ランダムフォレストの予測トレンド
ランダムフォレストの予測トレンド

ランダムフォレストの予測トレンド

本稿は Forex における通貨ペアのロングおよびショートポジションを予測するパターンを自動検索するための Rattle パッケージの使用について考察を行います。本稿は初心者トレーダーにも経験あるトレーダーにも有用な内容です。
機械学習モデルの評価と変数の選択
機械学習モデルの評価と変数の選択

機械学習モデルの評価と変数の選択

この記事では、機械学習モデルで使用する入力変数(予測変数)の選択、前処理および評価の詳細に焦点を当てています。新しいアプローチと予測分析とモデルの可能性と過学習への影響を考慮します。モデルを使用した全体的な結果は、この段階の結果に依存します。予測変数の選択に、新しい、オリジナルなアプローチを提供します。
ニューラル ネットワーク: EAの自己最適化
ニューラル ネットワーク: EAの自己最適化

ニューラル ネットワーク: EAの自己最適化

ポジションを最適化し、コードのコマンドに従って定期的に条件を終了するEAを開発します。ニューラル ネットワーク (多層パーセプトロン) を分析し、戦略を実現するためのモジュールの形式で実装します。毎月 (毎週、毎日、または毎時) ニューラル ネットワークを最適化する EAを作成します。したがって、自己最適化 EA を開発します。
preview
ニューラルネットワークが簡単に

ニューラルネットワークが簡単に

人工知能は、多くの場合、幻想的で複雑で理解できない何かに関連付けられます。 同時に、人工知能は日常生活の中でますます言及されています。 ニューラルネットワークの使用に関する成果に関するニュースは、多くのさまざまなメディアで取り上げられています。 この記事の目的は、誰でもニューラルネットワークを作成し、トレードでAIの成果をあげることを示すためにあります。
ニューラルネットワーク:理論~実践
ニューラルネットワーク:理論~実践

ニューラルネットワーク:理論~実践

今日、トレーダーはだれしもニューラルネットワークについて聞いたことがあり、それを使うのがかっこいいということがわかっています。多数の人がニューラルネットワークを利用してディールを行える人はスーパーヒューマンだと思っています。本稿ではニューラルネットワークのアーキテクチャを説明し、アプリケーションについて記述し、実用例を示していこうと思います。
ディープニューラルネットワーク(その3)サンプル選択と次元削減
ディープニューラルネットワーク(その3)サンプル選択と次元削減

ディープニューラルネットワーク(その3)サンプル選択と次元削減

本稿は、ディープニューラルネットワークに関する一連の記事の続きです。ここでは、ニューラルネットワークの訓練データの準備に当たってのサンプルの選択(ノイズ除去)、入力データの次元数の削減、及びデータセットの訓練/検証/テストセットへの分割を検討します。
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能性が考慮されます。
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法

マシンラーニング:サポートベクターマシンをトレーディングで利用する方法

「サポートベクターマシン」は生物情報学分野でこれまで長く利用され、複雑なデータセットを評価し、データ分類すに利用できる有用なパターンを抽出するため数学を利用しています。本稿はサポートベクターマシンとは何か、それがどのように役立つか、またなぜ複雑なパターンを抽出するのに便利かを考察します。そしてそれをマーケットに応用する方法、およびトレードを行う上で将来役立つであろう使用方法を調査します。また「サポートベクターマシン学習ツール」を使用し、読者のみなさんがご自身のトレーディングで実験することができる実用例を提供します。
preview
ニューラルネットワークが簡単に(第11部): GPTについて

ニューラルネットワークが簡単に(第11部): GPTについて

GPT-3は現在存在する言語ニューラルネットワークの中でおそらく最も高度なモデルの1つであり、その最大バリアントには1,750億個のパラメータが含まれています。もちろん、家庭にあるようなPCでそのような怪物を作成するつもりはありませんが、どのアーキテクチャソリューションを作業に使用し、それらからどのように利益を得ることができるかは確認することができます。
preview
機械学習を使いこなすには

機械学習を使いこなすには

アルゴリズム取引に関するトレーダーの知識の向上に役立つ資料を集めたので、チェックしてみてください。単純なアルゴリズムの時代は過ぎ去りつつあり、機械学習技術やニューラルネットワークを使用せずに成功することは難しくなっています。
preview
グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか

グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか

本稿では、グリッドおよびマーチンゲール取引に適用される機械学習手法について説明します。驚いたことに、世界中のネットではこのアプローチはほとんどまたはまったくカバーされていません。記事を読んだ後は、自分自身の自動売買ボットを作成することができるでしょう。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
preview
ニューラルネットワークが簡単に(第10回): Multi-Head Attention

ニューラルネットワークが簡単に(第10回): Multi-Head Attention

ニューラルネットワークにおける自己注意のメカニズムについては、以前に検討しました。実際には、最新のニューラルネットワークアーキテクチャは、いくつかの並列した自己注意スレッドを使用して、シーケンスの要素間のさまざまな依存関係を見つけます。このようなアプローチの実装を検討し、ネットワーク全体のパフォーマンスへの影響を評価しましょう。
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

本稿では、様々な訓練の変形によって得られたディープニューラルネットワークのハイパーパラメータにベイズ最適化を適用する可能性について検討します。様々な訓練の変形における最適なハイパーパラメータを有するDNNの分類の質が比較されます。DNN最適ハイパーパラメータの有効性の深さは、フォワードテストで確認されています。分類の質を向上させるための方向性が特定されています。
preview
PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム

PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム

この記事では、具体的な例を用いて、機械学習プロセスのコードと主要な段階の説明をします。 このモデルを取得するためには、PythonやRの知識は必要ありません。 さらに、MQL5の基本的な知識があれば十分です - まさに私のレベルです。 したがって、この記事が、機械学習の評価やプログラムへの実装に興味のある人たちの手助けとなり、幅広い人たちの良いチュートリアルとなることを期待しています。
ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング
ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング

ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング

アンサンブルの構築を続けます。今回は、以前に作成したバギングアンサンブルに、訓練可能な結合器、つまりディープニューラルネットワークが追加されます。ニューラルネットワークの1つは、刈り込み後に7つの最良アンサンブル出力を組み合わせます。2つ目はアンサンブルの500個の出力をすべて入力として取り込み、刈り込んで結合します。ニューラルネットワークは、Python用のKeras/TensorFlowパッケージを使用して構築されます。このパッケージの特徴には簡単に触れます。テストが実行されて、バギングアンサンブルとスタッキングアンサンブルの分類品質が比較されます。
ディープニューラルネットワーク(その1)データの準備
ディープニューラルネットワーク(その1)データの準備

ディープニューラルネットワーク(その1)データの準備

この一連の記事では、取引を含んだ多くの分野で応用されているディープニューラルネットワーク(DNN)の探索を続けます。ここでは、実践的な実験によって新しい方法や概念をテストするとともにこのテーマの新しい次元を探求する予定です。シリーズの最初の記事は、DNNのデータを準備することを目的としています。
preview
PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル

PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル

このプロジェクトでは、金融市場における深層学習に基づく予測にPythonを使用します。平均絶対誤差(MAE)、平均二乗誤差(MSE)、R二乗(R2)などの主要なメトリクスを使用してモデルのパフォーマンスをテストする複雑さを探求し、すべてを実行ファイルにまとめる方法を学びます。また、そのEAでONNXモデルファイルを作成します。
ディープニューラルネットワーク(その2)予測変数の変換と選択
ディープニューラルネットワーク(その2)予測変数の変換と選択

ディープニューラルネットワーク(その2)予測変数の変換と選択

このディープニューラルネットワークシリーズ第2稿では、モデルを訓練するためのデータを準備する過程で予測変数の変換と選択を検討します。
preview
MQL5の行列とベクトル

MQL5の行列とベクトル

特別な「matrix」と「vector」データ型を使用すると、数学表記に非常に近いコードを作成することができます。行列とベクトルのメソッドを使用すると、計算でネストされたループを作成したり配列で正しいインデックスを作成したりする必要がなくなるため、複雑なプログラムの開発における信頼性と速度が向上します。
preview
ニューラルネットワークが簡単に(第2回): ネットワークのトレーニングとテスト

ニューラルネットワークが簡単に(第2回): ネットワークのトレーニングとテスト

第2回目の今回は、引き続きニューラルネットワークの勉強をし、作成したCNetクラスをEAで使用した例を考えていきます。 学習時間、予測精度ともに同様の結果を示す2つのニューラルネットワークモデルを用いてタスクを行います。
preview
MQL言語を使用したゼロからのディープニューラルネットワークプログラミング

MQL言語を使用したゼロからのディープニューラルネットワークプログラミング

この記事は、MQL4/5言語を使用してディープニューラルネットワークを最初から作成する方法を読者に教えることを目的としています。
preview
データサイエンスと機械学習(第01回):線形回帰

データサイエンスと機械学習(第01回):線形回帰

私たちトレーダーは、数字に基づいた判断をするよう、システムと自分自身を訓練する時期に来ています。目ではなく、直感で信じるのは、これが世界が向かっているところだということです。波の方向に垂直に移動しましょう。
preview
母集団最適化アルゴリズム:灰色オオカミオプティマイザー(GWO)

母集団最適化アルゴリズム:灰色オオカミオプティマイザー(GWO)

最新の最適化アルゴリズムの1つである灰色オオカミオプティマイザについて考えてみましょう。テスト関数の元々の動作により、このアルゴリズムは、以前に検討されたものの中で最も興味深いものの1つになります。これは、ニューラルネットワークの訓練に使用される最も優れたアルゴリズムの1つであり、多くの変数を持つ滑らかな関数です。
preview
ニューラルネットワークが簡単に(第8回): アテンションメカニズム

ニューラルネットワークが簡単に(第8回): アテンションメカニズム

以前の記事では、ニューラルネットワークを整理するための様々な選択肢を既に検証しました. また、画像処理アルゴリズムから借りた畳み込みネットワークについても検討しました. 今回の記事では、言語モデルの開発に弾みをつけた「アテンション・メカニズム」を考えることを提案します.
preview
多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合

多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合

MQLとの統合を開発するために利用できるPythonパッケージが存在し、データの探索、作成、機械学習モデルの使用などのさまざまな機会がもたらされます。MQL5に組み込まれているPython統合により、単純な線形回帰から深層学習モデルまで、さまざまなソリューションを作成できます。開発環境を設定して準備する方法と、いくつかの機械学習ライブラリを使用する方法を見てみましょう。
安くて楽しいニューラルネットワーク - MetaTrader 5 でNeuroPro へリンク
安くて楽しいニューラルネットワーク - MetaTrader 5 でNeuroPro へリンク

安くて楽しいニューラルネットワーク - MetaTrader 5 でNeuroPro へリンク

トレード用の特定のニューラルネットワークプログラムが高価で複雑そうであったら、反対にシンプル過ぎると思えたら、NeuroPro をお試しください。それは無料でアマチュア用の最適な機能セットが備えられています。本稿では MetaTrader 5 と連携してそれを利用する方法をお伝えします。
preview
取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ

取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ

PythonでCatBoost分類器を訓練してモデルをmql5にエクスポートし、モデルパラメータとカスタムストラテジーテスターを解析します。Python言語とMetaTrader5ライブラリは、データの準備とモデルの訓練に使用されます。
preview
多層パーセプトロンとバックプロパゲーションアルゴリズム

多層パーセプトロンとバックプロパゲーションアルゴリズム

これら2つの手法の人気が高まり、Matlab、R、Python、C ++などで多くのライブラリが開発されています。これらのライブラリは、入力として訓練セットを受け取り、問題に適切なネットワークを自動的に作成します。基本的なニューラルネットワークタイプ(単一ニューロンパーセプトロンと多層パーセプトロンを含む)がどのように機能するかを理解してみましょう。ネットワークを訓練するためのエキサイティングなアルゴリズムである勾配降下法とバックプロパゲーションについて検討します。既存の複雑なモデルは、多くの場合、このような単純なネットワークモデルに基づいています。
preview
取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン

取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン

コンピュータービジョンを使用すると、価格チャートと指標の視覚的表現に関してニューラルネットワークを訓練できるようになります。この方法では、ニューラルネットワークにデジタルでフィードする必要がないため、テクニカル指標全体でより幅広い操作が可能になります。
preview
MQL5でONNXモデルを使用する方法

MQL5でONNXモデルを使用する方法

ONNX (Open Neural Network Exchange)は、機械学習モデルを表現するために構築されたオープンフォーマットです。この記事では、CNN-LSTMモデルを作成して金融時系列を予測する方法を検討します。MQL5エキスパートアドバイザー(EA)で作成されたONNXモデルを使用する方法も示します。
preview
ニューラルネットワークが簡単に(第9部):作業の文書化

ニューラルネットワークが簡単に(第9部):作業の文書化

長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。
preview
取引におけるニューラルネットワークの実用化(実践編)

取引におけるニューラルネットワークの実用化(実践編)

本稿では、Matlabプラットフォームでニューラルネットワークモジュールを実際に使用するための説明と手順を説明します。また、ニューラルネットワークモジュールを使用した取引システム作成の主な側面についても説明します。1つの記事で複合体を紹介できるようにするには、複数のニューラルネットワークモジュール機能を1つのプログラムに組み合わせるように変更する必要がありました。
preview
ニューラルネットワークの実験(第3回):実用化

ニューラルネットワークの実験(第3回):実用化

この連載では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5にアプローチします。
preview
どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測

取引されている銘柄の価格を予測するよりも、特定のテクニカル指標を予測する方が精度が高いことをご存知ですか。この洞察力をより良い取引戦略のために活用する方法を探るために、ぜひお読みください。
preview
データサイエンスと機械学習(第05回):決定木

データサイエンスと機械学習(第05回):決定木

決定木は、人間の思考方法を模倣してデータを分類します。木を作り、それを使ってデータを分類・予測する方法を見てみましょう。決定木アルゴリズムの主な目的は、不純物を含むデータを純粋なノードまたはそれに近いノードに分離することです。
preview
ニューラルネットワークが簡単に(第7回): 適応的最適化法

ニューラルネットワークが簡単に(第7回): 適応的最適化法

以前の記事では、ネットワーク内のすべてのニューロンに対して同じ学習率を用いてニューラルネットワークをトレーニングするためにストキャスティクススロープ降下法を使用しました。 本論文では、各ニューロンの学習速度を変化させることができる適応学習法に着目します。 その是非についても検討していきたいと思います。
preview
データサイエンスと機械学習—ニューラルネットワーク(第01回):フィードフォワードニューラルネットワークの解明

データサイエンスと機械学習—ニューラルネットワーク(第01回):フィードフォワードニューラルネットワークの解明

ニューラルネットワークの背後にある操作全体は、多くの人に気に入られていますが、ほとんどの人に理解されていません。この記事では、フィードフォワード型の多層知覚の密室の背後にあるすべてを平易な言葉で説明しようとします。
preview
ニューラルネットワークが簡単に(第13回): Batch Normalization

ニューラルネットワークが簡単に(第13回): Batch Normalization

前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。