ニューラルネットワークが簡単に(第12回): ドロップアウト
ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。
ニューラルネットワークが簡単に(第11部): GPTについて
GPT-3は現在存在する言語ニューラルネットワークの中でおそらく最も高度なモデルの1つであり、その最大バリアントには1,750億個のパラメータが含まれています。もちろん、家庭にあるようなPCでそのような怪物を作成するつもりはありませんが、どのアーキテクチャソリューションを作業に使用し、それらからどのように利益を得ることができるかは確認することができます。
グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか
本稿では、グリッドおよびマーチンゲール取引に適用される機械学習手法について説明します。驚いたことに、世界中のネットではこのアプローチはほとんどまたはまったくカバーされていません。記事を読んだ後は、自分自身の自動売買ボットを作成することができるでしょう。
多層パーセプトロンとバックプロパゲーションアルゴリズム
これら2つの手法の人気が高まり、Matlab、R、Python、C ++などで多くのライブラリが開発されています。これらのライブラリは、入力として訓練セットを受け取り、問題に適切なネットワークを自動的に作成します。基本的なニューラルネットワークタイプ(単一ニューロンパーセプトロンと多層パーセプトロンを含む)がどのように機能するかを理解してみましょう。ネットワークを訓練するためのエキサイティングなアルゴリズムである勾配降下法とバックプロパゲーションについて検討します。既存の複雑なモデルは、多くの場合、このような単純なネットワークモデルに基づいています。
取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン
コンピュータービジョンを使用すると、価格チャートと指標の視覚的表現に関してニューラルネットワークを訓練できるようになります。この方法では、ニューラルネットワークにデジタルでフィードする必要がないため、テクニカル指標全体でより幅広い操作が可能になります。
ニューラルネットワークが簡単に(第10回): Multi-Head Attention
ニューラルネットワークにおける自己注意のメカニズムについては、以前に検討しました。実際には、最新のニューラルネットワークアーキテクチャは、いくつかの並列した自己注意スレッドを使用して、シーケンスの要素間のさまざまな依存関係を見つけます。このようなアプローチの実装を検討し、ネットワーク全体のパフォーマンスへの影響を評価しましょう。
ニューラルネットワークが簡単に(第9部):作業の文書化
長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。
ニューラルネットワークが簡単に(第8回): アテンションメカニズム
以前の記事では、ニューラルネットワークを整理するための様々な選択肢を既に検証しました. また、画像処理アルゴリズムから借りた畳み込みネットワークについても検討しました. 今回の記事では、言語モデルの開発に弾みをつけた「アテンション・メカニズム」を考えることを提案します.
トランスダクション・アクティブ機械学習におけるスロープブースト
本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
ニューラルネットワークが簡単に(第7回): 適応的最適化法
以前の記事では、ネットワーク内のすべてのニューロンに対して同じ学習率を用いてニューラルネットワークをトレーニングするためにストキャスティクススロープ降下法を使用しました。 本論文では、各ニューロンの学習速度を変化させることができる適応学習法に着目します。 その是非についても検討していきたいと思います。
ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。
ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算
ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。
ニューラルネットワークが簡単に(第4回): リカレントネットワーク
これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。
ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。
PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム
この記事では、具体的な例を用いて、機械学習プロセスのコードと主要な段階の説明をします。 このモデルを取得するためには、PythonやRの知識は必要ありません。 さらに、MQL5の基本的な知識があれば十分です - まさに私のレベルです。 したがって、この記事が、機械学習の評価やプログラムへの実装に興味のある人たちの手助けとなり、幅広い人たちの良いチュートリアルとなることを期待しています。
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。
取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ
PythonでCatBoost分類器を訓練してモデルをmql5にエクスポートし、モデルパラメータとカスタムストラテジーテスターを解析します。Python言語とMetaTrader5ライブラリは、データの準備とモデルの訓練に使用されます。
ニューラルネットワークが簡単に(第2回): ネットワークのトレーニングとテスト
第2回目の今回は、引き続きニューラルネットワークの勉強をし、作成したCNetクラスをEAで使用した例を考えていきます。 学習時間、予測精度ともに同様の結果を示す2つのニューラルネットワークモデルを用いてタスクを行います。
取引におけるニューラルネットワークの実用化(実践編)
本稿では、Matlabプラットフォームでニューラルネットワークモジュールを実際に使用するための説明と手順を説明します。また、ニューラルネットワークモジュールを使用した取引システム作成の主な側面についても説明します。1つの記事で複合体を紹介できるようにするには、複数のニューラルネットワークモジュール機能を1つのプログラムに組み合わせるように変更する必要がありました。
ニューラルネットワークが簡単に
人工知能は、多くの場合、幻想的で複雑で理解できない何かに関連付けられます。 同時に、人工知能は日常生活の中でますます言及されています。 ニューラルネットワークの使用に関する成果に関するニュースは、多くのさまざまなメディアで取り上げられています。 この記事の目的は、誰でもニューラルネットワークを作成し、トレードでAIの成果をあげることを示すためにあります。
ディープニューラルネットワーク(その7)ニューラルネットワークのアンサンブル: スタッキング
アンサンブルの構築を続けます。今回は、以前に作成したバギングアンサンブルに、訓練可能な結合器、つまりディープニューラルネットワークが追加されます。ニューラルネットワークの1つは、刈り込み後に7つの最良アンサンブル出力を組み合わせます。2つ目はアンサンブルの500個の出力をすべて入力として取り込み、刈り込んで結合します。ニューラルネットワークは、Python用のKeras/TensorFlowパッケージを使用して構築されます。このパッケージの特徴には簡単に触れます。テストが実行されて、バギングアンサンブルとスタッキングアンサンブルの分類品質が比較されます。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング
本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能性が考慮されます。
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化
本稿では、様々な訓練の変形によって得られたディープニューラルネットワークのハイパーパラメータにベイズ最適化を適用する可能性について検討します。様々な訓練の変形における最適なハイパーパラメータを有するDNNの分類の質が比較されます。DNN最適ハイパーパラメータの有効性の深さは、フォワードテストで確認されています。分類の質を向上させるための方向性が特定されています。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
ディープニューラルネットワーク(その3)サンプル選択と次元削減
本稿は、ディープニューラルネットワークに関する一連の記事の続きです。ここでは、ニューラルネットワークの訓練データの準備に当たってのサンプルの選択(ノイズ除去)、入力データの次元数の削減、及びデータセットの訓練/検証/テストセットへの分割を検討します。
ディープニューラルネットワーク(その2)予測変数の変換と選択
このディープニューラルネットワークシリーズ第2稿では、モデルを訓練するためのデータを準備する過程で予測変数の変換と選択を検討します。
ディープニューラルネットワーク(その1)データの準備
この一連の記事では、取引を含んだ多くの分野で応用されているディープニューラルネットワーク(DNN)の探索を続けます。ここでは、実践的な実験によって新しい方法や概念をテストするとともにこのテーマの新しい次元を探求する予定です。シリーズの最初の記事は、DNNのデータを準備することを目的としています。
ニューラル ネットワーク: EAの自己最適化
ポジションを最適化し、コードのコマンドに従って定期的に条件を終了するEAを開発します。ニューラル ネットワーク (多層パーセプトロン) を分析し、戦略を実現するためのモジュールの形式で実装します。毎月 (毎週、毎日、または毎時) ニューラル ネットワークを最適化する EAを作成します。したがって、自己最適化 EA を開発します。
機械学習モデルの評価と変数の選択
この記事では、機械学習モデルで使用する入力変数(予測変数)の選択、前処理および評価の詳細に焦点を当てています。新しいアプローチと予測分析とモデルの可能性と過学習への影響を考慮します。モデルを使用した全体的な結果は、この段階の結果に依存します。予測変数の選択に、新しい、オリジナルなアプローチを提供します。
ランダムフォレストの予測トレンド
本稿は Forex における通貨ペアのロングおよびショートポジションを予測するパターンを自動検索するための Rattle パッケージの使用について考察を行います。本稿は初心者トレーダーにも経験あるトレーダーにも有用な内容です。
第三世代ニューラルネットワーク:深層ネットワーク
本稿ではマシン学習の新しい視点方向-深層学習、より正確には深いニューラルネットワークについてお話します。第二世代のニューラルネットワークについて、その連携のアーキテクチャと主なタイプ、メソッド、学習ルール、主な欠点とそれに続き第三世代の開発とその主要タイプ、特殊性、トレーニング方法について簡単に再検討しています。実データについて集積されたオートエンコーダのウェイトによって開始される深いニューラルネットワークの構築とトレーニングにおける実践的実験を行います。入力データを選択するところから行列偏差までの全段階について詳細にお話します。本稿最終部分は MQL4/R を基にした内蔵インディケータを持つ Expert Advisor での深いニューラルネットワークのソフトウェア実装です。
安くて楽しいニューラルネットワーク - MetaTrader 5 でNeuroPro へリンク
トレード用の特定のニューラルネットワークプログラムが高価で複雑そうであったら、反対にシンプル過ぎると思えたら、NeuroPro をお試しください。それは無料でアマチュア用の最適な機能セットが備えられています。本稿では MetaTrader 5 と連携してそれを利用する方法をお伝えします。
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法
「サポートベクターマシン」は生物情報学分野でこれまで長く利用され、複雑なデータセットを評価し、データ分類すに利用できる有用なパターンを抽出するため数学を利用しています。本稿はサポートベクターマシンとは何か、それがどのように役立つか、またなぜ複雑なパターンを抽出するのに便利かを考察します。そしてそれをマーケットに応用する方法、およびトレードを行う上で将来役立つであろう使用方法を調査します。また「サポートベクターマシン学習ツール」を使用し、読者のみなさんがご自身のトレーディングで実験することができる実用例を提供します。
ニューラルネットワーク:理論~実践
今日、トレーダーはだれしもニューラルネットワークについて聞いたことがあり、それを使うのがかっこいいということがわかっています。多数の人がニューラルネットワークを利用してディールを行える人はスーパーヒューマンだと思っています。本稿ではニューラルネットワークのアーキテクチャを説明し、アプリケーションについて記述し、実用例を示していこうと思います。
Connecting NeuroSolutions Neuronets
ニューロネットの作成に加え、NeuroSolutions ソフトウェアスウィートによりそれらを DLLとしてエクスポートすることが可能となります。本稿では、ニューロネット作成とDLL生成とそれを MetaTrader 5でのトレーディングのためExpert Advisor に連携する手順について述べています。