時系列分類問題における因果推論
この記事では、機械学習を用いた因果推論の理論と、Pythonによるカスタムアプローチの実装について見ていきます。因果推論と因果思考は哲学と心理学にルーツを持ち、現実を理解する上で重要な役割を果たしています。
RestAPIを統合したMQL5強化学習エージェントの開発(第3回):MQL5で自動手番とテストスクリプトを作成する
この記事では、MQL5関数とユニットテストを統合した、Pythonによる三目並べの自動手番の実装について説明します。目標は、MQL5でのテストを通じて、対戦のインタラクティブ性を向上させ、システムの信頼性を確保することです。このプレゼンテーションでは、対戦ロジックの開発、統合、実地テストについて説明し、最後にダイナミックな対戦環境と堅牢な統合システムを作成します。
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)
この記事では、自然界の生物の遺伝物質で起こる自然なプロセスをモデル化した2進数遺伝的アルゴリズム(binary genetic algorithm:BGA)を見ていきます。
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)
この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)
前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
ニューラルネットワークが簡単に(第70回):閉形式方策改善演算子(CFPI)
この記事では、閉形式の方策改善演算子を使用して、オフラインモードでエージェントの行動を最適化するアルゴリズムを紹介します。
ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)
オフライン学習では、固定されたデータセットを使用するため、環境の多様性をカバーする範囲が制限されます。学習過程において、私たちのエージェントはこのデータセットを超える行動を生成することができます。環境からのフィードバックがなければ、そのような行動の評価が正しいとどうやって確信できるのでしょうか。訓練データセット内のエージェントの方策を維持することは、訓練の信頼性を確保するために重要な要素となります。これが、この記事でお話しする内容です。
GMDH (The Group Method of Data Handling):MQL5で組合せアルゴリズムを実装する
この記事では、MQL5における組合せアルゴリズムと、その改良版である組合せ選択(Combinatorial Selective)アルゴリズムの実装について、データ処理のグループ法アルゴリズムファミリーの探求を続けます。
知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析
データ分析における次元削減技術である主成分分析について、固有値とベクトルを用いてどのように実装できるかを考察します。いつものように、MQL5ウィザードで使用可能なExpertSignalクラスのプロトタイプの開発を目指します。
ONNX統合の課題を克服する
ONNXは、異なるプラットフォーム間で複雑なAIコードを統合するための素晴らしいツールです。ただし、この素晴らしいツールを最大限に活用するためにはいくつかの課題に対処する必要があります。この記事では、読者が直面する可能性のある一般的な問題と、それを軽減する方法について説明します。
データサイエンスと機械学習(第22回):オートエンコーダニューラルネットワークを活用してノイズからシグナルへと移行することで、よりスマートな取引を実現する
目まぐるしく変化する金融市場の世界では、意味のあるシグナルをノイズから切り離すことが、取引を成功させるために極めて重要です。オートエンコーダは、洗練されたニューラルネットワークアーキテクチャを採用するため、市場データ内の隠れたパターンを発見し、ノイズの多い入力を実用的な洞察に変換することに優れています。この記事では、オートエンコーダがいかに取引慣行に革命をもたらし、トレーダーに意思決定を強化し、今日のダイナミックな市場で競争力を得るための強力なツールを提供しているかを探ります。
知っておくべきMQL5ウィザードのテクニック(第15回):ニュートンの多項式を用いたサポートベクトルマシン
サポートベクトルマシンは、データの次元を増やす効果を調べることで、あらかじめ定義されたクラスに基づいてデータを分類します。これは教師あり学習法で、多次元のデータを扱う可能性を考えるとかなり複雑です。この記事では、2次元データの非常に基本的な実装であるニュートンの多項式が、価格とアクションを分類する際にどのように効率的に実行できるかを検討します。
GMDH (The Group Method of Data Handling):MQL5で多層反復アルゴリズムを実装する
この記事では、MQL5におけるGMDH (The Group Method of Data Handling)の多層反復アルゴリズム実装について説明します。
知っておくべきMQL5ウィザードのテクニック(第14回):STFによる多目的時系列予測
データのモデリングに「空間」と「時間」の両方の測定基準を使用する空間的時間的融合は、主にリモートセンシングや、私たちの周囲をよりよく理解するための他の多くの視覚ベースの活動で有用です。発表された論文のおかげで、トレーダーへの可能性を検証することで、その活用に斬新なアプローチを取ります。
データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明
ニューラルネットワーク内部で使用される最適化アルゴリズムを解明しながら、ニューラルネットワークの核心に飛び込みます。この記事では、ニューラルネットワークの可能性を最大限に引き出し、モデルを精度と効率の新たな高みへと押し上げる重要なテクニックご紹介します。
MQL5入門(第6部):MQL5における配列関数の入門ガイド (II)
MQL5の旅の次の段階を始めましょう。この洞察に満ちて初心者に優しい記事では、残りの配列関数について調べ、複雑な概念を解明し、効率的な取引戦略を作成できるようにします。ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse、ArraySortについて説明します。アルゴリズム取引の専門知識を、これらの必要不可欠な配列関数で高めてください。一緒にMQL5マスターへの道を歩みましょう。
Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間
Pythonでディープラーニングのモデルを作成する際、季節性から恩恵を受けることはできるのでしょうか。ONNXモデルのデータをフィルタすることでより良い結果が得られるのでしょうか。どの期間を使用するべきでしょうか。この記事では、これらすべてを取り上げます。
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
不一致問題(Disagreement Problem):AIにおける複雑性の説明可能性を深く掘り下げる
説明可能性という波乱の海を航海しながら、人工知能(AI)の謎の核心に飛び込みましょう。モデルがその内部構造を隠す領域において、私たちの探求は、機械学習の回廊にこだまする「不一致問題」を明らかにします。
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
MQL5入門(第5部):MQL5における配列関数の入門ガイド
全くの初心者のために作られた第5部では、MQL5配列の世界を探検してみましょう。この記事は、複雑なコーディングの概念を簡素化し、明快さと包括性に重点を置いています。質問が受け入れられ、知識が共有される、学習者のコミュニティに仲間入りしてください。
ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化
最初の記事で強化学習を扱って以来、何らかの形で、環境の探索と報酬関数の決定という2つの問題に触れてきました。最近の記事は、オフライン学習における探索の問題に費やされています。今回は、作者が報酬関数を完全に排除したアルゴリズムを紹介したいと思います。
RestAPIを統合したMQL5強化学習エージェントの開発(第1回):MQL5でRestAPIを使用する方法
この記事では、異なるアプリケーションやソフトウェアシステム間の相互作用におけるAPI (Application Programming Interface)の重要性についてお話しします。アプリケーション間のやり取りを簡素化し、データや機能を効率的に共有することを可能にするAPIの役割を見ていきます。
母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。
母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)
本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。
母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。
PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル
このプロジェクトでは、金融市場における深層学習に基づく予測にPythonを使用します。平均絶対誤差(MAE)、平均二乗誤差(MSE)、R二乗(R2)などの主要なメトリクスを使用してモデルのパフォーマンスをテストする複雑さを探求し、すべてを実行ファイルにまとめる方法を学びます。また、そのEAでONNXモデルファイルを作成します。
知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール
ナンバーウォールは、リニアシフトバックレジスタの一種で、収束を確認することにより、予測可能な数列を事前にスクリーニングします。これらのアイデアがMQL5でどのように役立つかを見ていきます。
知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM
制限ボルツマンマシン(Restrictive Boltzmann Machine、RBM)は、基本的なレベルでは、次元削減による教師なし分類に長けた2層のニューラルネットワークです。その基本原理を採用し、常識にとらわれない方法で設計し直して訓練すれば有用なシグナルフィルタが得られるかどうかを検証します。
float16およびfloat8形式のONNXモデルを扱う
機械学習モデルの表現に使用されるデータ形式は、その有効性に決定的な役割を果たします。近年、深層学習モデルを扱うために特別に設計された新しい型のデータがいくつか登場しています。この記事では、現代のモデルで広く採用されるようになった2つの新しいデータ形式に焦点を当てます。
時系列マイニングのためのデータラベル(第6回):ONNXを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF
打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。
MQL5入門(第4部):構造体、クラス、時間関数をマスターする
最新記事でMQL5プログラミングの秘密を解き明かしましょう。構造体、クラス、時間関数の本質に迫り、コーディングの旅に力を与えます。初心者から経験豊富な開発者まで、個のガイドは、MQL5をマスターするための貴重な洞察を提供し、複雑な概念を簡素化します。プログラミングのスキルを高め、アルゴリズム取引の世界で一歩先を行きましょう。
MQL5入門(第3部):MQL5のコア要素をマスターする
この初心者向けの記事では、MQL5プログラミングの基本を解説します。配列、カスタム関数、プリプロセッサ、イベント処理など、すべてのコードをわかりやすく説明し、すべての行にアクセスできるようにします。すべてのステップで理解を深める独自のアプローチで、MQL5のパワーを引き出しましょう。この記事はMQL5をマスターするための基礎となるもので、各コード行の説明に重点を置き、明確で充実した学習体験を提供します。
MQL5入門(第2部):定義済み変数、共通関数、制御フロー文の操作
連載第2部の光り輝く旅に出かけましょう。これらの記事は単なるチュートリアルではなく、プログラミング初心者と魔法使いが共に集う魔法の世界への入り口です。この旅を本当に魔法のようなものにしているのは何でしょうか。連載第2部は、複雑な概念を誰にでも理解できるようにした、さわやかなシンプルさが際立っています。読者の質問にお答えしながら、双方向的に私たちと関わることで、充実した個別学習体験をお約束します。MQL5を理解することが誰にとっても冒険となるようなコミュニティを作りましょう。魔法の世界へようこそ。
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト
この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)
第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。