知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用
移動平均収束拡散法(MACD)オシレーターとオンバランスボリューム(OBV)オシレーターは、MQL5のエキスパートアドバイザー(EA)内で併用できるもう一つの指標ペアです。本連載における慣例どおり、この組み合わせも補完関係にあり、MACDがトレンドを確認し、OBVが出来高を検証します。MQL5ウィザードを用いて、この2つが持つ潜在力を構築、検証します。
知っておくべきMQL5ウィザードのテクニック(第70回): 指数カーネルネットワークにおけるSARとRVIのパターンの使用
前回の記事では、SARとRVIのインジケーターペアを紹介しました。今回は、このインジケーターペアを機械学習によってどのように拡張できるかを検討します。SARとRVIは、それぞれトレンドとモメンタムを補完し合う関係にあります。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、カーネルとチャネルのサイズを指数関数的に拡大・調整することで、このインジケーターペアの予測を微調整します。この処理は、常にMQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内でおこなわれます。
MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析
複数の戦略をどのように組み合わせれば、最も効果的に強力なアンサンブル戦略を構築できるでしょうか。本記事では、3種類の戦略を1つの取引アプリケーションに統合する方法について検討します。トレーダーは通常、ポジションのエントリーとクローズに特化した戦略を用いますが、私たちは機械がこのタスクをより優れた形で遂行できるかどうかを探ります。最初の議論として、ストラテジーテスターの機能と、本タスクで必要となるオブジェクト指向プログラミング(OOP)の原則に慣れていきます。
知っておくべきMQL5ウィザードのテクニック(第68回): コサインカーネルネットワークでTRIXとWPRのパターンを使用する
前回の記事では、TRIXとWilliams Percent Range (WPR)の指標ペアを紹介しましたが、今回はこの指標ペアを機械学習で拡張する方法について検討します。TRIXとWPRは、トレンド指標とサポート/レジスタンス補完ペアとして組み合わせられます。本機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使用し、予測精度を微調整する際にコサインカーネルをアーキテクチャに組み込んでいます。これは常に、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイル内で行われます。。
MetaTrader 5機械学習の設計図(第1回):データリーケージとタイムスタンプの修正
MetaTrader 5で機械学習を取引に活用する以前に、最も見落とされがちな落とし穴の一つであるデータリーケージに対処することが極めて重要です。本記事では、データリーケージ、特にMetaTrader 5のタイムスタンプの罠がどのようにモデルのパフォーマンスを歪め、信頼性の低い売買シグナルにつながるのかを解説します。この問題の仕組みに踏み込み、その防止戦略を提示することで、実取引環境で信頼できる予測を提供する堅牢な機械学習モデルを構築するための道を切り開きます。
MQL5で自己最適化エキスパートアドバイザーを構築する(第7回):複数期間での同時取引
本連載記事では、テクニカル指標を使用する際の最適な期間を特定するためのさまざまな方法を検討してきました。本記事では、読者に対して逆のロジックを示します。すなわち、単一の最適期間を選ぶのではなく、利用可能なすべての期間を効果的に活用する方法を示します。このアプローチにより廃棄されるデータ量が減少し、通常の価格予測以外に機械学習アルゴリズムを活用する方法も得られます。
知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する
FrAMAインジケーターとForce Indexオシレーターは、トレンドと出来高のツールであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事では、このペアを紹介し、機械学習の適用可能性を検討しました。畳み込みニューラルネットワークを使用しており、内積カーネルを利用して、これらのインジケーターの入力に基づいた予測をおこないます。これは、MQL5ウィザードと連携してEAを組み立てるカスタムシグナルクラスファイルで実行されます。
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
データサイエンスとML(第41回):YOLOv8を用いた外国為替および株式市場のパターン検出
金融市場でパターンを検出するのは、チャート上の内容を確認する必要があるため困難ですが、これは画像の制限によりMQL5では実行が困難です。この記事では、最小限の労力でチャート上のパターンを検出するのに役立つ、Pythonで作成された適切なモデルについて説明します。
機械学習の限界を克服する(第2回):再現性の欠如
本記事では、同一の戦略と金融銘柄を用いても、ブローカーによって取引結果が大きく異なる理由について探ります。その背景には、価格が分散的に形成されていることや、データの不一致があるためです。本記事は、MQL5開発者がMQL5マーケットプレイスで自らの製品に対して賛否両論の評価を受ける理由を理解し、透明性が高く再現可能な成果を確保するためには、特定のブローカーに合わせたアプローチを取る必要があることを示唆しています。この取り組みが広く受け入れられれば、コミュニティにとって重要な実務上のベストプラクティスへと発展する可能性があります。
データサイエンスとML(第40回):機械学習データにおけるフィボナッチリトレースメントの利用
フィボナッチリトレースメントはテクニカル分析で人気のツールであり、トレーダーが潜在的な反転ゾーンを特定するのに役立ちます。本記事では、これらのリトレースメントレベルを機械学習モデルの目的変数に変換し、この強力なツールを使用して市場をより深く理解できるようにする方法について説明します。
データサイエンスとML(第39回):ニュース × 人工知能、それに賭ける価値はあるか
ニュースは金融市場を動かす力を持っており、特に非農業部門雇用者数(NFP)のような主要指標の発表は大きな影響を与えます。私たちは、単一のヘッドラインが急激な価格変動を引き起こす様子を何度も目にしてきました。本記事では、ニュースデータと人工知能(AI)の強力な融合について探っていきます。
データサイエンスとML(第38回):外国為替市場におけるAI転移学習
AIの画期的な進歩、たとえばChatGPTや自動運転車などは、単独のモデルから生まれたわけではなく、複数のモデルや共通の分野から得られた累積的な知識を活用することで実現しています。この「一度学習した知識を他に応用する」というアプローチは、アルゴリズム取引におけるAIモデルの変革にも応用可能です。本記事では、異なる金融商品の情報を活用し、他の銘柄における予測精度向上に役立てる方法として、転移学習の活用方法について解説します。
知っておくべきMQL5ウィザードのテクニック(第64回):ホワイトノイズカーネルでDeMarkerとEnvelope Channelsのパターンを活用する
DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。前回の記事では、機械学習を加えて、これらのインジケーターのペアを紹介しました。ホワイトノイズカーネルを使用してこれら2つのインジケーターからのベクトル化されたシグナルを処理する回帰型ニューラルネットワークを使用しています。これは、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイルで実行されます。
知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する
ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。
知っておくべきMQL5ウィザードのテクニック(第61回):教師あり学習でADXとCCIのパターンを活用する
ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。今回は、機械学習の主要な3つの学習モードすべてを活用して、どのように体系化できるかを見ていきます。ウィザードによって組み立てられたEAを使用することで、これら2つのインジケーターが示すパターンを評価することが可能になり、まずは教師あり学習をこれらのパターンにどのように適用できるかを検討します。
機械学習の限界を克服する(第1回):相互運用可能な指標の欠如
私たちのコミュニティがAIをあらゆる形態で活用した信頼性の高い取引戦略を構築しようとする努力を、静かに蝕んでいる強力で広範な力があります。本稿では、私たちが直面している問題の一部は、「ベストプラクティス」に盲目的に従うことに根ざしていることを明らかにします。読者に対して、実際の市場に基づくシンプルな証拠を提供することで、なぜそのような行動を避け、むしろドメイン固有のベストプラクティスを採用すべきかを論理的に示します。これによって、私たちのコミュニティがAIの潜在的な可能性を回復するチャンスを少しでも持てるようになるのです。
集団型ADAM(適応モーメント推定法)
この記事では、よく知られていて人気のあるADAM勾配最適化手法を集団アルゴリズムに変換し、さらにハイブリッド個体を導入して修正した方法を紹介しています。この新しいアプローチでは、確率分布を使って成功した判断の要素を組み合わせたエージェントを作ることができます。大きな革新点は、有望な解からの情報を適応的に蓄積するハイブリッド集団個体を形成することであり、それによって複雑な多次元空間での探索効率が高まります。
汎用MLP近似器に基づくエキスパートアドバイザー
この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。
3D反転パターンに基づくアルゴリズム取引
3Dバーによる自動売買の新しい世界を発見します。多次元の価格バー上で自動売買ロボットはどのように見えるのでしょうか。3Dバーの「黄色のクラスタ」はトレンドの反転を予測できるのでしょうか。多次元取引はどのように見えるのでしょうか。
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)
前回の記事では、PSformerフレームワークの理論的側面について議論しました。このフレームワークは、従来のTransformerアーキテクチャに、パラメータ共有(PS)メカニズムと時空間Segment Attention (SegAtt)という2つの主要な革新をもたらします。本稿では、前回に引き続き、提案された手法をMQL5を用いて実装する作業について説明します。
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)
この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。
株式市場における非線形回帰モデル
株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。
算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ
本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)
SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
外国為替データ分析における連関規則の使用
スーパーマーケットの小売分析で使われる予測ルールを、実際のFX市場に応用する方法は?クッキー、牛乳、パンの購買傾向と株式市場の取引が関係する方法は?この記事では、連関規則を活用した革新的なアルゴリズム取引手法について解説します。
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)
Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
原子軌道探索(AOS)アルゴリズム:改良版
第2部では、AOS (Atomic Orbital Search)アルゴリズムの改良版の開発を続け、特定の演算子に注目して効率性と適応性の向上を図ります。アルゴリズムの基礎とメカニズムを分析した後、複雑な解探索空間を解析する能力を高めるための性能向上のアイデアについて議論し、最適化ツールとしての機能を拡張する新しいアプローチを提案します。
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)
LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析
この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
Numbaを使用したPythonの高速取引ストラテジーテスター
この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
原子軌道探索(AOS)アルゴリズム
この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。
取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)
HypDiffフレームワークで提案されているように、双曲潜在空間における初期データのエンコーディングに異方性拡散プロセスを用いることで、現在の市場状況におけるトポロジー的特徴を保持しやすくなり、分析の質を向上させることができます。前回の記事では、提案されたアプローチの実装をMQL5を用いて開始しました。今回はその作業を継続し、論理的な完結に向けて進めていきます。
取引におけるニューラルネットワーク:双曲潜在拡散モデル(HypDiff)
この記事では、異方性拡散プロセスを用いた双曲潜在空間における初期データのエンコーディング手法について検討します。これにより、現在の市場状況におけるトポロジー的特徴をより正確に保持でき、分析の質が向上します。
レーベンバーグ・マルカートアルゴリズムを用いた多層パーセプトロンのトレーニング
この記事では、順伝播型(フィードフォワード)ニューラルネットワークの学習におけるレーベンバーグ・マルカートアルゴリズムの実装を紹介します。また、scikit-learn Pythonライブラリのアルゴリズムと性能比較もおこなっています。まずは、勾配降下法、モーメンタム付き勾配降下法、確率的勾配降下法などのより単純な学習法について簡単に触れます。
Pythonによる農業国通貨への天候影響分析
天候と外国為替にはどのような関係があるのでしょうか。古典的な経済理論は、天候のような要因が市場の動きに与える影響を長い間無視してきました。しかし、すべてが変わりました。天候条件と農業通貨の市場でのポジションとの間に、どのようなつながりがあるのかを探ってみましょう。
取引におけるニューラルネットワーク:方向性拡散モデル(DDM)
本稿では、前向き拡散過程においてデータ依存的な異方性および方向性を持つノイズを活用するDirectional Diffusion Models(DDM、方向性拡散モデル)について議論し、意味のあるグラフ表現を捉える手法を紹介します。
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現
NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)
本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
ALGLIBライブラリの最適化手法(第2回):
この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。