Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 2): Funciones MQL5 para interacción HTTP con API REST del juego de tres en raya
Este artículo detalla cómo MQL5 puede interactuar con Python y FastAPI, utilizando llamadas HTTP en MQL5 para comunicarse con un juego de tres en raya en Python. En él se discute la creación de una API con FastAPI para esta integración e se incluye un script de prueba en MQL5, resaltando la versatilidad del MQL5, la simplicidad del Python y la eficiencia del FastAPI en la conexión de diferentes tecnologías para soluciones innovadoras.
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)
En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)
Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.
Redes neuronales: así de sencillo (Parte 63): Entrenamiento previo del Transformador de decisiones no supervisado (PDT)
Continuamos nuestra análisis de la familia de métodos del Transformador de decisiones. En artículos anteriores ya hemos observado que entrenar el transformador subyacente en la arquitectura de estos métodos supone todo un reto y requiere una gran cantidad de datos de entrenamiento marcados. En este artículo, analizaremos un algoritmo para utilizar trayectorias no marcadas para el entrenamiento previo de modelos.
Desarrollo de un sistema de repetición (Parte 35): Haciendo retoques (I)
Tenemos que arreglar algunas cosas antes de poder continuar de verdad. Pero no es necesariamente una corrección, sino una mejora en la forma de gestionar y utilizar la clase. La razón es que hay fallos debidos a algún tipo de interacción dentro del sistema. A pesar de los intentos de comprender la razón de algunos de los fallos, para ponerles fin, todos ellos se vieron frustrados, ya que algunos no tenían sentido. Cuando usamos punteros o recursión en C / C++, y el programa empieza a fallar.
Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)
En este artículo concluiremos la primera fase de la construcción. Aunque será algo relativamente rápido, explicaré detalles que quizás no se comentaron anteriormente. Pero aquí explicaré algunas cosas que mucha gente no entiende por qué son como son. Uno de estos casos es el del ratón. ¡¡¡¿Sabes por qué tienes que pulsar la tecla Shift o Ctrl en tu teclado?!!!
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 1): Como usar RestAPIs en MQL5
Este artículo aborda la importancia de las APIs (application programming interface) en la comunicación entre diferentes aplicaciones y sistemas de software. En él, se destaca el papel de las API a la hora de simplificar la interacción entre aplicaciones, ya que les permiten compartir datos y funcionalidades de forma eficiente.
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial
Últimamente, he recibido comentarios de varios compañeros tráders sobre cómo usar el asesor multidivisa que estamos analizando con brókeres que utilizan prefijos y/o sufijos con nombres de símbolos, así como sobre la forma de implementar zonas horarias comerciales o sesiones comerciales en el asesor.
Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)
Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos
En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.
Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)
En este artículo, analizaremos otro algoritmo de optimización inspirado en la naturaleza inanimada: el algoritmo de búsqueda de sistema cargado (CSS). El objetivo de este artículo es presentar un nuevo algoritmo de optimización basado en los principios de la física y la mecánica.
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 4)
Este artículo supone la cuarta parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta parte, veremos las propiedades de MQTT v5.0, su semántica, cómo leemos algunas de ellas, y ofreceremos un breve ejemplo de cómo se pueden usar las propiedades para ampliar el protocolo.
Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline
Durante el aprendizaje offline, optimizamos la política del Agente usando los datos de la muestra de entrenamiento. La estrategia resultante proporciona al Agente confianza en sus acciones. No obstante, dicho optimismo no siempre está justificado y puede acarrear mayores riesgos durante el funcionamiento del modelo. Hoy veremos un método para reducir estos riesgos.
Características del Wizard MQL5 que debe conocer (Parte 07): Dendrogramas
La clasificación de datos para el análisis y la predicción es un área muy diversa del aprendizaje automático con un gran número de enfoques y métodos. En este artículo analizaremos uno de estos enfoques, a saber, la Clasificación Jerárquica Aglomerativa (Agglomerative Hierarchical Classification).
Experimentos con redes neuronales (Parte 7): Transmitimos indicadores
Ejemplos de transmisión de indicadores a un perceptrón. En el artículo ofreceremos conceptos generales y presentaremos un asesor listo para usar muy simple, así como los resultados de su optimización y sus pruebas forward.
Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)
En los 2 últimos artículos nos hemos centrado en el método Decision Transformer, que modela las secuencias de acciones en el contexto de un modelo autorregresivo de recompensas deseadas. En el artículo de hoy, analizaremos otro algoritmo para optimizar este método.

Trabajamos con fechas y horas en MQL5
Resulta esencial que los tráders y desarrolladores de herramientas comerciales comprendan cómo manejar las fechas y horas de manera adecuada y eficaz. En este artículo, veremos cómo podemos manejar fechas y horas al crear herramientas comerciales efectivas.

Dominando ONNX: Un punto de inflexión para los tráders de MQL5
Sumérjase en el mundo de ONNX, un potente formato abierto para compartir modelos de aprendizaje automático. Descubra cómo el uso de ONNX puede revolucionar el trading algorítmico en MQL5, permitiendo a los tráders integrar sin problemas modelos avanzados de IA y llevar sus estrategias al siguiente nivel. Descubra los secretos de la compatibilidad multiplataforma y aprenda a liberar todo el potencial de ONNX en sus operaciones MQL5. Mejore sus operaciones con esta guía detallada de ONNX.

Modelos de clasificación de la biblioteca Scikit-learn y su exportación a ONNX
En este artículo, analizaremos el uso de todos los modelos de clasificación del paquete Scikit-learn para resolver el problema de la clasificación de los iris de Fisher; asimismo, intentaremos convertir estos al formato ONNX y usar los modelos resultantes en programas MQL5. También compararemos la precisión de los modelos originales y sus versiones ONNX en el conjunto de datos completo Iris dataset.

Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)
En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.

Algoritmos de optimización de la población: Búsqueda por difusión estocástica (Stochastic Diffusion Search, SDS)
En este artículo veremos la búsqueda por difusión estocástica, o SDS, que es un algoritmo de optimización muy potente y eficiente basado en los principios del paseo aleatorio. El algoritmo puede encontrar soluciones óptimas en espacios multidimensionales complejos, con una alta tasa de convergencia y la capacidad de evitar extremos locales.

Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.

Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble
En este artículo, seguiremos analizando desde un nuevo ángulo los indicadores comerciales más populares. Vamos a procesar una composición horizontal de transformaciones naturales. El mejor indicador para ello será la media móvil exponencial doble (Double Exponential Moving Average, DEMA).

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 2): Señales del indicador - Parabolic SAR de marco temporal múltiple
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, por ejemplo, trailing-stop y trailing-profit, etc.) con más de un par de símbolos de un gráfico. Esta vez usaremos solo un indicador, a saber, Parabolic SAR o iSAR en varios marcos temporales, comenzando desde PERIOD_M15 y terminando con PERIOD_D1.

Interfaz gráfica: consejos y recomendaciones para crear una biblioteca gráfica en MQL
Hoy abarcaremos los conceptos básicos de las bibliotecas GUI para comprender cómo funcionan estas o incluso comenzar a crear bibliotecas propias.

Desarrollo de un sistema de repetición (Parte 32): Sistema de órdenes (I)
De todas las cosas desarrolladas hasta ahora, esta, como seguramente también notarás y con el tiempo estarás de acuerdo, es la más desafiante de todas. Lo que tenemos que hacer es algo simple: hacer que nuestro sistema simule lo que hace un servidor comercial en la práctica. Esto de tener que implementar una forma de simular exactamente lo que haría el servidor comercial parece simple. Al menos en palabras. Pero necesitamos hacer esto de manera que, para el usuario del sistema de repetición/simulación, todo suceda de la manera más invisible o transparente posible.

Desarrollo de un sistema de repetición (Parte 31): Proyecto Expert Advisor — Clase C_Mouse (V)
Desarrollar una manera de poner un cronómetro, de modo que durante una repetición/simulación, éste pueda decirnos cuánto tiempo falta, puede parecer a primera vista una tarea simple y de rápida solución. Muchos simplemente intentarían adaptar y usar el mismo sistema que se utiliza cuando tenemos el servidor comercial a nuestro lado. Pero aquí reside un punto que muchos quizás no consideran al pensar en tal solución. Cuando estás haciendo una repetición, y esto para no hablar del hecho de la simulación, el reloj no funciona de la misma manera. Este tipo de cosa hace complejo construir tal sistema.

Desarrollo de un sistema de repetición (Parte 30): Proyecto Expert Advisor — Clase C_Mouse (IV)
Aquí te mostraré una técnica que puede ayudarte mucho en varios momentos de tu vida como programador. En contra de lo que muchos dicen, lo limitado no es la plataforma, sino los conocimientos del individuo que lo dice. Lo que se explicará aquí es que con un poco de sentido común y creatividad, se puede hacer que la plataforma MetaTrader 5 sea mucho más interesante y versátil, sin tener que crear programas locos ni nada por el estilo puedes crear un código sencillo, pero seguro y fiable. Utiliza tu ingenio para domar el código con el fin de modificar algo que ya existe, sin eliminar ni añadir una sola línea al código original.

Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)
Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.

Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)
Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.

Teoría de categorías en MQL5 (Parte 22): Una mirada distinta a las medias móviles
En el presente artículo intentaremos simplificar los conceptos tratados en esta serie centrándonos en solo un indicador, el más común y probablemente el más fácil de entender: la media móvil. También veremos el significado y las posibles aplicaciones de las transformaciones naturales verticales.

Integración de modelos ML con el simulador de estrategias (Conclusión): Implementación de un modelo de regresión para la predicción de precios
Este artículo describe la implementación de un modelo de regresión de árboles de decisión para predecir precios de activos financieros. Se realizaron etapas de preparación de datos, entrenamiento y evaluación del modelo, con ajustes y optimizaciones. Sin embargo, es importante destacar que el modelo es solo un estudio y no debe ser usado en operaciones reales.

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)
En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 3)
El presente artículo supone la tercera parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta ocasión, hablaremos con detalle sobre la aplicación de un desarrollo basado en pruebas para implementar el intercambio de paquetes CONNECT/CONNACK. Al final de este paso, nuestro cliente DEBERÁ poder comportarse adecuadamente al lidiar con cualquier posible resultado del servidor al intentar conectarse.

Teoría de categorías en MQL5 (Parte 21): Transformaciones naturales con ayuda de LDA
Este artículo, el número 21 de nuestra serie, continuaremos analizando las transformaciones naturales y cómo se pueden implementar mediante el análisis discriminante lineal. Como en el artículo anterior, la implementación se presentará en formato de clase de señal.

Algoritmos de optimización de la población: Algoritmo de salto de rana aleatorio (Shuffled Frog-Leaping, SFL)
El artículo presenta una descripción detallada del algoritmo de salto de rana aleatorio (SFL) y sus capacidades para resolver problemas de optimización. El algoritmo SFL se inspira en el comportamiento de las ranas en su entorno natural y ofrece un enfoque innovador para la optimización de características. El algoritmo SFL supone una herramienta eficaz y flexible que puede gestionar una gran variedad de tipos de datos y alcanzar soluciones óptimas.

Teoría de categorías en MQL5 (Parte 20): Autoatención y transformador
Hoy nos apartaremos un poco de nuestros temas habituales y veremos parte del algoritmo de ChatGPT. ¿Tiene alguna similitud o concepto tomado de las transformaciones naturales? Intentaremos responder estas y otras preguntas usando nuestro código en formato de clase de señal.

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 2)
El artículo forma parte de una serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT. En esta parte describiremos la organización de nuestro código, los primeros archivos de encabezado y las clases, así como la escritura de las pruebas. Este artículo también incluirá notas breves sobre un desarrollo basado en las pruebas y su aplicación a este proyecto.

Regresión neta elástica mediante descenso de coordenadas en MQL5
En este artículo, analizaremos la implementación práctica de la regresión neta elástica para minimizar el sobreajuste y al mismo tiempo separar automáticamente los predictores útiles de aquellos que tienen poco poder de pronóstico.

Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.