
Marcado de datos en el análisis de series temporales (Parte 1):Creamos un conjunto de datos con marcadores de tendencia utilizando el gráfico de un asesor
En esta serie de artículos, presentaremos varias técnicas de etiquetado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El etiquetado específico de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorar la precisión del modelo e incluso ayudarle a dar un salto cualitativo.

Redes neuronales: así de sencillo (Parte 56): Utilizamos la norma nuclear para incentivar la exploración
La exploración del entorno en tareas de aprendizaje por refuerzo es un problema relevante. Con anterioridad, ya hemos analizado algunos de estos enfoques. Hoy le propongo introducir otro método basado en la maximización de la norma nuclear, que permite a los agentes identificar estados del entorno con un alto grado de novedad y diversidad.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa
En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 24): FOREX (V)
Hoy eliminaremos la restricción que impedía la ejecución de simulaciones basadas en el trazado de LAST e introduciremos un nuevo punto de entrada específico para este tipo de simulación. Ahora, vean que todo el mecanismo operativo se fundamentará en los principios del mercado de divisas. La principal distinción en esta rutina reside en la separación entre las simulaciones BID y LAST. Pero, es importante notar que la metodología empleada en la aleatorización del tiempo y su ajuste para la compatibilidad con la clase C_Replay permanece idéntica en ambos tipos de simulación. Esto es bueno, pues las alteraciones en uno de los modos resultan en mejoras automáticas en el otro, especialmente en lo que concierne al manejo del tiempo entre los ticks.

Teoría de categorías en MQL5 (Parte 18): Cuadrado de la naturalidad
El artículo continúa la serie sobre teoría de categorías, presentando transformaciones naturales que suponen un elemento clave de la teoría. Hoy echaremos un vistazo a su definición (aparentemente compleja) y luego profundizaremos en los ejemplos y métodos de aplicación de las transformaciones para pronosticar la volatilidad.

Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)
El aprendizaje contrastivo (Contrastive learning) supone un método de aprendizaje de representación no supervisado. Su objetivo consiste en entrenar un modelo para que destaque las similitudes y diferencias entre los conjuntos de datos. En este artículo, hablaremos del uso de enfoques de aprendizaje contrastivo para investigar las distintas habilidades del Actor.

Aproximación por fuerza bruta a la búsqueda de patrones (Parte VI): Optimización cíclica
En este artículo mostraremos la primera parte de las mejoras que nos permitieron no solo cerrar toda la cadena de automatización para comerciar en MetaTrader 4 y 5, sino también hacer algo mucho más interesante. A partir de ahora, esta solución nos permitirá automatizar completamente tanto el proceso de creación de asesores como el proceso de optimización, así como minimizar el gasto de recursos a la hora de encontrar configuraciones comerciales efectivas.

Pruebas de permutación de Monte Carlo en MetaTrader 5
En este artículo echaremos un vistazo a cómo podemos realizar pruebas de permutación sobre la base de datos de ticks barajados en cualquier asesor experto utilizando solo MetaTrader 5.

Teoría de Categorías en MQL5 (Parte 17): Funtores y monoides
Este es el último artículo de la serie sobre funtores. En él, revisaremos los monoides como categoría. Los monoides, que ya hemos introducido en esta serie, se utilizan aquí para ayudar a dimensionar la posición junto con los perceptrones multicapa.

Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)
Siempre que analizamos métodos de aprendizaje por refuerzo, nos enfrentamos al problema de explorar eficientemente el entorno. Con frecuencia, la resolución de este problema hace que el algoritmo se complique, llevándonos al entrenamiento de modelos adicionales. En este artículo veremos un enfoque alternativo para resolver el presente problema.

Comprobando la informatividad de distintos tipos de medias móviles
Todos conocemos la importancia de la media móvil para muchos tráders. Existen diferentes tipos de medias móviles que pueden resultar útiles en el trading. Vamos a echarles un vistazo y a hacer una sencilla comparación para ver cuál puede dar mejores resultados.

Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa
Seguimos analizando los funtores y cómo se pueden implementar utilizando redes neuronales artificiales. Dejaremos temporalmente el enfoque que implica el pronóstico de la volatilidad e intentaremos implementar nuestra propia clase de señales para establecer señales de entrada y salida para una posición.

Biblioteca de análisis numérico ALGLIB en MQL5
En este artículo, echaremos un vistazo rápido a la biblioteca de análisis numérico ALGLIB 3.19, sus aplicaciones y sus nuevos algoritmos, que pueden mejorar la eficiencia del análisis de datos financieros.

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 1): Señales basadas en ADX combinadas con Parabolic SAR
En este artículo, entenderemos por asesor multidivisa un asesor o robot comercial que puede comerciar (abrir/cerrar órdenes, gestionar órdenes, etc.) con más de un par de símbolos de un gráfico.

Redes neuronales: así de sencillo (Parte 53): Descomposición de la recompensa
Ya hemos hablado más de una vez de la importancia de seleccionar correctamente la función de recompensa que utilizamos para estimular el comportamiento deseado del Agente añadiendo recompensas o penalizaciones por acciones individuales. Pero la cuestión que sigue abierta es el descifrado de nuestras señales por parte del Agente. En este artículo hablaremos sobre la descomposición de la recompensa en lo que respecta a la transmisión de señales individuales al Agente entrenado.

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte III): Interfaz comercial simple y móvil
En esta serie de artículos analizamos la integración de interfaces gráficas interactivas en paneles comerciales móviles en MQL5. En la tercera parte, utilizaremos los desarrollos de las partes anteriores para convertir paneles comerciales estáticos en dinámicos.

Redes neuronales: así de sencillo (Parte 52): Exploración con optimismo y corrección de la distribución
A medida que el modelo se entrena con el búfer de reproducción de experiencias, la política actual del Actor se aleja cada vez más de los ejemplos almacenados, lo cual reduce la eficacia del entrenamiento del modelo en general. En este artículo, analizaremos un algoritmo para mejorar la eficiencia del uso de las muestras en los algoritmos de aprendizaje por refuerzo.

Teoría de categorías en MQL5 (Parte 15): Funtores con grafos
El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.

Transacciones comerciales. Estructuras de solicitud y respuesta, descripción y registro.
En el presente artículo veremos cómo trabajar con las estructuras de las solicitudes comerciales: la creación de una solicitud, su verificación preliminar antes de enviarla al servidor, la respuesta del servidor a una solicitud comercial y la estructura de las transacciones comerciales. Asimismo, crearemos funciones simples y cómodas para enviar órdenes comerciales al servidor y, basándonos en todo lo discutido, y también crearemos un asesor-informante sobre las transacciones comerciales.

La técnica comercial RSI Deep Three Move
El presente artículo muestra la técnica comercial RSI Deep Three Move en MetaTrader 5. El artículo se basa en una nueva serie de estudios que demuestran varias técnicas comerciales basadas en el RSI, así como un indicador técnico para medir la fuerza y el impulso de los valores, incluidas las acciones, las divisas y las materias primas.

Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)
Los dos últimos artículos han considerado el algoritmo SAC (Soft Actor-Critic), que incorpora la regularización de la entropía en la función de la recompensa. Este enfoque equilibra la exploración del entorno y la explotación del modelo, pero solo es aplicable a modelos estocásticos. El presente material analizará un enfoque alternativo aplicable tanto a modelos estocásticos como deterministas.

Todo lo que necesita saber sobre la estructura de un programa MQL5
Cualquier programa en cualquier lenguaje de programación tiene una estructura determinada. En este artículo, aprenderá los componentes principales de la estructura de un programa en MQL5, que pueden resultarle muy útiles a la hora de crear un sistema comercial o una herramienta comercial para MetaTrader 5.

Teoría de categorías en MQL5 (Parte 14): Funtores con orden lineal
Este artículo de la serie sobre la implementación de la teoría de categorías en MQL5 está dedicado a los funtores. Hoy veremos cómo asignar el orden lineal a un conjunto utilizando funtores al analizar dos conjuntos de datos que parecen no tener relación entre sí.

Análisis de ciclos usando el algoritmo de Goertzel
En el artículo presentamos utilidades que implementan el algoritmo de Goertzel en MQL5 y dos formas de aplicar este método al analizar cotizaciones de precios para el desarrollo de estrategias.

Estructuras en MQL5 y métodos para imprimir sus datos
En este artículo veremos las estructuras MqlDateTime, MqlTick, MqlRates, MqlBookInfo y los métodos para imprimir datos desde estas estructuras. Para imprimir todos los campos de una estructura, existe la función estándar ArrayPrint(), que muestra en un cómodo formato tabular los datos contenidos en un array con el tipo de estructura que se está procesando.

Redes neuronales: así de sencillo (Parte 50): Soft Actor-Critic (optimización de modelos)
En el artículo anterior, implementamos el algoritmo Soft Actor-Critic (SAC), pero no pudimos entrenar un modelo rentable. En esta ocasión, optimizaremos el modelo creado previamente para obtener los resultados deseados en su rendimiento.

Aproximación por fuerza bruta a la búsqueda de patrones (Parte V): Una mirada desde el otro lado
En este artículo mostraré al lector un enfoque del trading algorítmico completamente distinto al que he tenido que llegar después de bastante tiempo. Obviamente, todo esto está relacionado con mi programa de fuerza bruta, que ha sufrido una serie de cambios que le permiten resolver varios problemas al mismo tiempo. No obstante, el artículo ha resultado lo más general y sencillo posible, por lo que también resultará apto para quienes no conocen el tema o simplemente están de paso.

El modelo de movimiento de precios y sus principales disposiciones (Parte 3): Cálculo de parámetros óptimos en el juego bursátil
En el marco del presente enfoque de ingeniería desarrollado por el autor, basado en la teoría de la probabilidad, se encuentran las condiciones para abrir una posición rentable, y también se calculan los valores óptimos (que maximizan las ganancias) para el stop loss y el take profit.

Transformada discreta de Hartley
En este artículo nos familiarizaremos con uno de los métodos de análisis espectral y de procesamiento de señales: la transformada discreta de Hartley. Con ella podremos filtrar señales, analizar su espectro y mucho más. Las capacidades de la DHT no son inferiores a las de la transformada discreta de Fourier. Sin embargo, a diferencia de este, la DHT utiliza solo números reales, lo cual la hace más cómoda de implementar en la práctica y los resultados de su aplicación resultan más visuales.

Funciones en las aplicaciones MQL5
Las funciones son componentes de importancia crítica en cualquier lenguaje de programación. Entre otras cosas, ayudan a los desarrolladores a aplicar el principio DRY (don't repeat youself, no te repitas). El artículo analiza las funciones y su creación en MQL5 usando aplicaciones sencillas que enriquecen nuestros sistemas comerciales sin complicarlos.

StringFormat(). Panorámica, ejemplos de uso listos para aplicar
El artículo supone una continuación de la revisión de la función PrintFormat(). Hoy veremos brevemente cómo formatear líneas utilizando StringFormat() y su uso posterior en el programa. Asimismo, escribiremos plantillas para mostrar información sobre un símbolo en el registro del terminal. El presente artículo resultará útil tanto a principiantes como a desarrolladores experimentados.

Analizamos PrintFormat() y tomamos ejemplos listos para usar
El presente artículo resultará útil tanto a principiantes como a desarrolladores experimentados. En él veremos el funcionamiento de la función PrintFormat(), analizaremos ejemplos de formato string y escribiremos plantillas para enviar información diversa al registro del terminal.

Teoría de categorías en MQL5 (Parte 13): Eventos del calendario con esquemas de bases de datos
El artículo analiza cómo se pueden incluir esquemas de bases de datos para la clasificación en MQL5. Vamos a repasar brevemente cómo los conceptos de esquema de base de datos pueden combinarse con la teoría de categorías para identificar información textual (cadenas) relevante para el comercio. La atención se centrará en los eventos del calendario.

Recordando una antigua estrategia de tendencia: dos osciladores estocásticos, MA y Fibonacci
Estrategias comerciales antiguas. Este artículo presenta una estrategia de seguimiento de tendencias. La estrategia es puramente técnica y usa varios indicadores y herramientas para ofrecer señales y niveles objetivo. Los componentes de la estrategia incluyen: Un oscilador estocástico de 14 periodos, un oscilador estocástico de 5 periodos, una media móvil de 200 periodos y una proyección de Fibonacci (para fijar los niveles objetivo).

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic
Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.

Crear paneles gráficos en MQL5 es ahora más fácil
En este artículo, ofreceremos una guía sencilla y comprensible para cualquier usuario que quiera crear una de las herramientas más valiosas y útiles en el trading: un panel gráfico que facilite las tareas comerciales. Los paneles gráficos nos permiten ahorrar tiempo y centrarnos más en las operaciones en sí.

¿Puede Heiken Ashi dar buenas señales en combinación con las medias móviles?
Las combinaciones de estrategias pueden mejorar el rendimiento de las transacciones. Podemos combinar indicadores y patrones para obtener confirmaciones adicionales. Las medias móviles nos ayudan a confirmar tendencias y seguirlas. Se trata del indicador técnico más famoso, lo cual se explica por su sencillez y su probada eficacia de análisis.

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q
En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte II): Interfaz móvil (II)
Descubra el potencial de la presentación dinámica de datos en sus estrategias y utilidades comerciales con nuestra guía detallada para crear GUI móviles en MQL5. Sumérjase en los principios fundamentales de la programación orientada a objetos y aprenda a diseñar y utilizar de manera fácil y eficiente una o más GUI móviles en un solo gráfico.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 23): FOREX (IV)
La creación ahora se realiza en el mismo punto en el que convertimos los ticks en barras. Así, si algo va mal durante la conversión, nos daremos cuenta del error enseguida. Esto se debe a que el mismo código que coloca las barras de 1 minuto en el gráfico cuando avanzamos rápidamente también se utiliza para el sistema de posicionamiento y para colocar las barras durante el avance normal. En otras palabras, el código responsable de esta tarea ya no se duplica en ningún lugar. De esta manera, tenemos un sistema mucho más adecuado tanto para el mantenimiento como para las mejoras.