Artículos sobre programación en el lenguaje MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.
preview
DoEasy. Elementos de control (Parte 28): Estilos de barra en el control «ProgressBar»

DoEasy. Elementos de control (Parte 28): Estilos de barra en el control «ProgressBar»

El artículo desarrollará los estilos de visualización y el texto de descripción para la barra de progreso del control ProgressBar.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Ya hemos avanzado bastante en el desarrollo del asesor multidivisa con varias estrategias funcionando en paralelo. Basándonos en nuestra experiencia, revisaremos la arquitectura de nuestra solución y trataremos de mejorarla antes de avanzar demasiado.
preview
Operaciones angulares para tráders

Operaciones angulares para tráders

En este artículo se analizarán las operaciones angulares. Veremos varios métodos para construir ángulos y cómo aplicarlos en el trading.
preview
Simulación de mercado (Parte 03): Una cuestión de rendimiento

Simulación de mercado (Parte 03): Una cuestión de rendimiento

Muchas veces, estamos obligados a dar un paso atrás para luego avanzar. En este artículo, mostraré todos los cambios necesarios para que el rendimiento de los indicadores Mouse y Chart Trade no se viera comprometido. Como bono, presentaré otros cambios que ocurrieron en otros archivos de encabezado, los cuales serán muy utilizados en el futuro.
preview
Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Hoy analizaremos los grupos monoidales como un medio que normaliza conjuntos de monoides y los hace más comparables entre una gama más amplia de conjuntos de monoides y tipos de datos.
preview
Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Hoy proponemos al lector familiarizarse con los modelos de difusión direccional que explotan el ruido anisotrópico y direccional dependiente de los datos durante la difusión directa para capturar representaciones gráficas significativas.
preview
Implementación de los cierres parciales en MQL5

Implementación de los cierres parciales en MQL5

En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
preview
Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Desarrollo de un factor de calidad para los EAs

Desarrollo de un factor de calidad para los EAs

En este artículo, te explicaremos cómo desarrollar un factor de calidad que tu Asesor Experto (EA) pueda mostrar en el simulador de estrategias. Te presentaremos dos formas de cálculo muy conocidas (Van Tharp y Sunny Harris).
preview
Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)

Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)

El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 53): Clase del indicador abstracto básico

Trabajando con las series temporales en la biblioteca DoEasy (Parte 53): Clase del indicador abstracto básico

En este artículo, vamos a analizar la creación de la clase del indicador abstracto que a continuación va a usarse como una clase básica para crear objetos de los indicadores estándar y personalizados de la biblioteca.
preview
Indicador de previsión de volatilidad con Python

Indicador de previsión de volatilidad con Python

Hoy pronosticaremos la volatilidad extrema futura utilizando una clasificación binaria. Asimismo, crearemos un indicador de previsión de volatilidad extrema usando el aprendizaje automático.
preview
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
preview
DoEasy. Elementos de control (Parte 8): Objetos básicos WinForms por categorías, controles "GroupBox" y "CheckBox

DoEasy. Elementos de control (Parte 8): Objetos básicos WinForms por categorías, controles "GroupBox" y "CheckBox

En este artículo, veremos la creación de los objetos WinForms "GroupBox" y "CheckBox", y crearemos los objetos básicos para las categorías de los objetos WinForms. Todos los objetos que hemos creado hasta ahora son estáticos, es decir, no tienen ninguna funcionalidad para interactuar con el ratón.
preview
Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Este artículo describe cómo trabajar con indicadores incorporados en MQL5, con especial atención en la creación de un asesor experto basado en el indicador RSI utilizando un enfoque de proyecto. Hoy aprenderá a obtener y utilizar los valores RSI, a gestionar las fluctuaciones de liquidez y a mejorar la visualización de las transacciones mediante objetos gráficos. Además, el artículo abordará otros aspectos importantes: el riesgo como porcentaje del depósito, los ratios riesgo/rentabilidad y la modificación del riesgo sobre la marcha para proteger los beneficios.
preview
Asesor experto de scalping Ilan 3.0 Ai con aprendizaje automático

Asesor experto de scalping Ilan 3.0 Ai con aprendizaje automático

¿Recuerda el asesor experto Ilan 1.6 Dymanic? Hoy intentaremos mejorarlo usando el aprendizaje automático. Así, en el presente artículo reanimaremos el antiguo desarrollo y añadiremos aprendizaje automático con una tabla Q. Paso a paso.
preview
Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

El polinomio de Newton, que crea ecuaciones cuadráticas a partir de un conjunto de unos pocos puntos, es un enfoque arcaico pero interesante para observar una serie temporal. En este artículo tratamos de explorar qué aspectos podrían ser de utilidad para los operadores desde este enfoque, así como abordar sus limitaciones.
preview
DoEasy. Funciones de servicio (Parte 1): Patrones de precios

DoEasy. Funciones de servicio (Parte 1): Patrones de precios

En este artículo empezaremos a desarrollar métodos de búsqueda de patrones de precios usando datos de series temporales. Un patrón tiene una serie de parámetros comunes a todas las clases y tipos de patrones. Todos los datos de este tipo se centrarán en la clase de objeto de patrón abstracto básico. Hoy crearemos una clase de patrón abstracto y una clase de patrón Pin-bar.
preview
Simulador rápido de estrategias comerciales en Python usando Numba

Simulador rápido de estrategias comerciales en Python usando Numba

Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Este debate profundiza en los retos que se plantean al trabajar con grandes bases de código. Exploraremos las mejores prácticas para la organización del código en MQL5 e implementaremos un enfoque práctico para mejorar la legibilidad y la escalabilidad del código fuente de nuestro Panel de administración de operaciones. Además, nuestro objetivo es desarrollar componentes de código reutilizables que puedan beneficiar a otros desarrolladores en el desarrollo de sus algoritmos. Sigue leyendo y únete a la conversación.
preview
Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz

Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz

¿Cómo funciona la negociación de portafolios en Fórex? ¿Cómo pueden sintetizarse la teoría de portafolios de Markowitz para optimizar las proporciones de los portafolios y el modelo VaR para optimizar el riesgo de los portafolios? Hoy crearemos un código de teoría de portafolios en el que, por un lado, obtendremos un riesgo bajo y, por otro, una rentabilidad aceptable a largo plazo.
preview
Aplicación de la teoría de juegos a algoritmos comerciales

Aplicación de la teoría de juegos a algoritmos comerciales

Hoy crearemos un asesor comercial adaptativo de autoaprendizaje basado en DQN de aprendizaje automático, con inferencia causal multivariante, que negociará con éxito simultáneamente en 7 pares de divisas, con agentes de diferentes pares intercambiando información entre sí.
preview
Interfaz gráfica: consejos y recomendaciones para crear una biblioteca gráfica en MQL

Interfaz gráfica: consejos y recomendaciones para crear una biblioteca gráfica en MQL

Hoy abarcaremos los conceptos básicos de las bibliotecas GUI para comprender cómo funcionan estas o incluso comenzar a crear bibliotecas propias.
preview
Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Seguimos analizando los funtores y cómo se pueden implementar utilizando redes neuronales artificiales. Dejaremos temporalmente el enfoque que implica el pronóstico de la volatilidad e intentaremos implementar nuestra propia clase de señales para establecer señales de entrada y salida para una posición.
preview
Cuantificación en el aprendizaje automático (Parte 1): Teoría, ejemplo de código, análisis sintáctico de la aplicación CatBoost

Cuantificación en el aprendizaje automático (Parte 1): Teoría, ejemplo de código, análisis sintáctico de la aplicación CatBoost

En este artículo, hablaremos de la aplicación teórica de la cuantificación en la construcción de modelos arbóreos. Asimismo, analizaremos los métodos de cuantificación implementados en CatBoost. El material se presentará sin fórmulas matemáticas complejas, en un lenguaje accesible.
preview
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
preview
Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.
preview
Desarrollo de asesores expertos autooptimizables en MQL5

Desarrollo de asesores expertos autooptimizables en MQL5

Construya asesores expertos que miren hacia delante y se ajusten a cualquier mercado.
preview
DoEasy. Elementos de control (Parte 24): El objeto auxiliar WinForms "Pista"

DoEasy. Elementos de control (Parte 24): El objeto auxiliar WinForms "Pista"

En este artículo, elaboraremos nuevamente la lógica de especificación de los objetos principal y básico para todos los objetos de la biblioteca WinForms; asimismo, desarrollaremos el nuevo objeto básico "Pista" y varias de sus clases derivadas para indicar la posible dirección de movimiento de la línea separadora.
preview
Red neuronal en la práctica: La primera neurona

Red neuronal en la práctica: La primera neurona

En este artículo, comenzaremos a crear algo que muchos se sorprenden al ver funcionando: una simple y modesta neurona que lograremos programar con muy poco código en MQL5. La neurona funcionó perfectamente en las pruebas que realicé. Bueno, retrocedamos un poco en esta misma serie sobre redes neuronales, para que puedas entender de qué estoy hablando.
preview
El modelo de movimiento de precios y sus principales disposiciones (Parte 2):  Ecuación de evolución del campo de probabilidad del precio y aparición del paseo aleatorio observado

El modelo de movimiento de precios y sus principales disposiciones (Parte 2): Ecuación de evolución del campo de probabilidad del precio y aparición del paseo aleatorio observado

En el presente artículo, hemos derivado una ecuación para la evolución del campo probabilístico de precio, hemos encontrado un criterio para acercarnos al salto de precio, y también hemos revelado la esencia de los valores de precio en los gráficos de cotización y el mecanismo para la aparición de un paseo aleatorio de dichos valores .
preview
DoEasy. Elementos de control (Parte 15): Objeto WinForms TabControl - múltiples filas de encabezados de pestañas, métodos de trabajo con pestañas

DoEasy. Elementos de control (Parte 15): Objeto WinForms TabControl - múltiples filas de encabezados de pestañas, métodos de trabajo con pestañas

En este artículo, continuaremos desarrollando el objeto WinForm TabControl: hoy crearemos la clase de objeto de pestaña, haremos posible la disposición de los encabezados de las pestañas en varias filas y añadiremos los métodos para trabajar con las pestañas del objeto.
preview
Redes neuronales: así de sencillo (Parte 53): Descomposición de la recompensa

Redes neuronales: así de sencillo (Parte 53): Descomposición de la recompensa

Ya hemos hablado más de una vez de la importancia de seleccionar correctamente la función de recompensa que utilizamos para estimular el comportamiento deseado del Agente añadiendo recompensas o penalizaciones por acciones individuales. Pero la cuestión que sigue abierta es el descifrado de nuestras señales por parte del Agente. En este artículo hablaremos sobre la descomposición de la recompensa en lo que respecta a la transmisión de señales individuales al Agente entrenado.
preview
Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

Uso del algoritmo de aprendizaje automático PatchTST para predecir la acción del precio durante las próximas 24 horas

En este artículo, aplicamos un algoritmo de red neuronal relativamente complejo lanzado en 2023 llamado PatchTST para predecir la acción del precio durante las próximas 24 horas. Utilizaremos el repositorio oficial, haremos ligeras modificaciones, entrenaremos un modelo para EURUSD y lo aplicaremos para realizar predicciones futuras tanto en Python como en MQL5.