Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)
El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.
DoEasy. Elementos de control (Parte 7): Elemento de control "etiqueta de texto".
En este artículo, crearemos la clase de control «Etiqueta de texto» de WinForms. Dicho objeto se podrá colocar en cualquier lugar de nuestro contenedor, y su propia funcionalidad replicará algunas de las funcionalidades de las etiquetas de texto de MS Visual Studio: podremos establecer los parámetros de fuente para el texto mostrado.
Indicadores múltiplos em um gráfico (Parte 04): Iniciando pelo EA
En artículos anteriores, expliqué cómo crear un indicador con múltiples subventanas, lo que se vuelve interesante cuando usamos un indicador personalizado. Aquí entenderemos cómo añadir múltiples ventanas en un EA.
Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión
De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.

Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo
En este artículo, vamos a crear una lista para almacenar los datos de tick del símbolo único, después, verificaremos su creación y obtención de los datos requeridos en el Asesor Experto. Dichas listas —siendo aplicada cada una de ellas para cada símbolo usado— van a componer luego la colección de datos de tick.
DoEasy. Elementos de control (Parte 14): Nuevo algoritmo de denominación de los elementos gráficos. Continuamos trabajando con el objeto WinForms TabControl
En este artículo, crearemos un nuevo algoritmo para nombrar todos los elementos gráficos y construir gráficos personalizados. Asimismo, continuaremos desarrollando el objeto WinForms TabControl.
Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?
Probablemente mucha gente esté cansada de intentar predecir el mercado bursátil constantemente. ¿No le gustaría tener una bola de cristal que le ayudara a tomar decisiones de inversión más informadas? Las redes neuronales de autoaprendizaje podrían ser su solución. En este artículo, analizaremos si estos potentes algoritmos pueden ayudarnos a "subirnos a la ola" y ser más astutos que el mercado bursátil. Mediante el análisis de grandes cantidades de datos y la identificación de patrones, las redes neuronales de autoaprendizaje pueden hacer predicciones que a menudo resultan más precisas que las realizadas por los tráders. Veamos si estas tecnologías de vanguardia pueden usarse para tomar decisiones de inversión inteligentes y ganar más.
Redes neuronales: así de sencillo (Parte 47): Espacio continuo de acciones
En este artículo ampliamos el abanico de tareas de nuestro agente. El proceso de entrenamiento incluirá algunos aspectos de la gestión de capital y del riesgo que forma parte integral de cualquier estrategia comercial.
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados
El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor
Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos
El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.
DoEasy. Elementos de control (Parte 20): El objeto WinForms SplitContainer
Hoy comenzaremos a desarrollar el control SplitContainer del conjunto de elementos de MS Visual Studio. Este elemento constará de dos paneles separados por un divisor móvil vertical u horizontal.

Lenguaje de programación visual Drakon: una herramienta de comunicación para desarrolladores y clientes MQL
DRAKON es un lenguaje de programación visual especialmente diseñado para simplificar la interacción entre especialistas de distintas ramas (biólogos, físicos, ingenieros...) y programadores en proyectos espaciales rusos (por ejemplo, al crear el complejo "Burán"). En este artículo, hablaremos sobre cómo DRAKON hace que la creación de algoritmos sea accesible e intuitiva, incluso si nunca nos hemos enfrentado al código. Asimismo, también veremos cómo el lenguaje DRAKON ayuda tanto al cliente a explicar sus pensamientos al encargar robots comerciales, como al programador a cometer menos errores en funciones complejas.

Experimentos con redes neuronales (Parte 7): Transmitimos indicadores
Ejemplos de transmisión de indicadores a un perceptrón. En el artículo ofreceremos conceptos generales y presentaremos un asesor listo para usar muy simple, así como los resultados de su optimización y sus pruebas forward.

DoEasy. Elementos de control (Parte 4): Elemento de control "Panel", parámetros Padding y Dock
En este artículo, implementaremos el funcionamiento de los parámetros de panel Padding (rellenado/márgenes internos en todos los lados del elemento) y Dock (la forma en que el objeto se ubica dentro del contenedor).

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q
En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.

Integración de modelos ocultos de Márkov en MetaTrader 5
En este artículo demostramos cómo los modelos ocultos de Márkov entrenados con Python pueden integrarse en las aplicaciones de MetaTrader 5. Los modelos ocultos de Márkov son una potente herramienta estadística utilizada para modelar datos de series temporales, en los que el sistema modelado se caracteriza por estados no observables (ocultos). Una premisa fundamental de los modelos ocultos de Márkov es que la probabilidad de estar en un estado determinado en un momento concreto depende del estado del proceso en el intervalo de tiempo anterior.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 21): FOREX (II)
Vamos a continuar el armado del sistema para cubrir el mercado FOREX. Entonces, para resolver este problema, primero necesitaríamos declarar la carga de los ticks antes de cargar las barras previas. Esto soluciona el problema, pero al mismo tiempo obliga al usuario a seguir un tipo de estructura en el archivo de configuración que, en mi opinión, no tiene mucho sentido. La razón es que, al desarrollar la programación responsable de analizar y ejecutar lo que está en el archivo de configuración, podemos permitir que el usuario declare las cosas en cualquier orden.

Gráficos en la biblioteca DoEasy (Parte 82): Refactorización de los objetos de la biblioteca y colección de objetos gráficos
En el presente artículo, mejoraremos todos los objetos de la biblioteca: para ello, asignaremos a cada objeto su tipo único y continuaremos desarrollando la clase de colección de objetos gráficos de la biblioteca.

Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)
En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.

Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.

Transacciones comerciales. Estructuras de solicitud y respuesta, descripción y registro.
En el presente artículo veremos cómo trabajar con las estructuras de las solicitudes comerciales: la creación de una solicitud, su verificación preliminar antes de enviarla al servidor, la respuesta del servidor a una solicitud comercial y la estructura de las transacciones comerciales. Asimismo, crearemos funciones simples y cómodas para enviar órdenes comerciales al servidor y, basándonos en todo lo discutido, y también crearemos un asesor-informante sobre las transacciones comerciales.

Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales
Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python
En este artículo, vamos a discutir cómo podemos construir Asesores Expertos capaces de seleccionar de forma autónoma y cambiar las estrategias de negociación en función de las condiciones imperantes en el mercado. Aprenderemos sobre las cadenas de Markov y cómo pueden sernos útiles como operadores algorítmicos.

Teoría de categorías en MQL5 (Parte 11): Grafos
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí veremos cómo podemos integrar la teoría de grafos con los monoides y otras estructuras de datos al desarrollar una estrategia de cierre del sistema comercial.

Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables
En las partes anteriores, el Asesor Experto (EA) en desarrollo sólo podía utilizar un tamaño de posición fijo para operar. Esto es aceptable para las pruebas, pero no es aconsejable cuando se opera en una cuenta real. Hagamos posible el comercio utilizando tamaños de posición variables.

Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)
En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.

Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos
En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 15): Nacimiento del SIMULADOR (V) - RANDOM WALK
En este artículo, vamos a finalizar la fase en la que estamos desarrollando el simulador para nuestro sistema. El propósito principal aquí será ajustar el algoritmo visto en el artículo anterior. Este algoritmo tiene como objetivo crear el movimiento de RANDOM WALK. Por lo tanto, es fundamental comprender el contenido de los artículos anteriores para seguir lo que se explicará aquí. Si no has seguido el desarrollo del simulador, te aconsejo que veas esta secuencia desde el principio. De lo contrario, podrías perderte en lo que se explicará aquí.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 11): Nacimiento del SIMULADOR (I)
Para poder usar datos que forman barras, debemos abandonar la repetición y comenzar a desarrollar un simulador. Utilizaremos las barras de 1 minuto precisamente porque nos ofrecen un nivel de complejidad mínimo.

Algoritmo de recompra: simulación del comercio multidivisa
En este artículo crearemos un modelo matemático para simular la formación de precios multidivisa y completaremos el estudio del principio de diversificación en la búsqueda de mecanismos para aumentar la eficiencia del trading que inicié en el artículo anterior con cálculos teóricos.

Desarrollo de Sistemas Avanzados de Trading ICT: Implementación de señales en un indicador de Order Blocks
En este artículo, aprenderás a desarrollar un indicador de Order Blocks basado en el volumen de la profundidad de mercado y a optimizarlo mediante buffers para mejorar su precisión. Concluimos esta fase del proyecto y nos preparamos para las siguientes, en las que implementaremos una clase de gestión de riesgos y un bot de trading que aprovechará las señales generadas por el indicador.

Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)
Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.

Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures
En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.

Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería
Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.

Teoría de categorías en MQL5 (Parte 13): Eventos del calendario con esquemas de bases de datos
El artículo analiza cómo se pueden incluir esquemas de bases de datos para la clasificación en MQL5. Vamos a repasar brevemente cómo los conceptos de esquema de base de datos pueden combinarse con la teoría de categorías para identificar información textual (cadenas) relevante para el comercio. La atención se centrará en los eventos del calendario.

Reimaginando estrategias clásicas en Python: Cruce de medias móviles (MAs, Moving Averages)
En este artículo, revisamos la estrategia clásica de cruce de medias móviles para evaluar su eficacia actual. Dado el tiempo transcurrido desde su creación, exploramos las posibles mejoras que la IA puede aportar a esta estrategia de negociación tradicional. Mediante la incorporación de técnicas de IA, pretendemos aprovechar las capacidades predictivas avanzadas para optimizar potencialmente los puntos de entrada y salida de las operaciones, adaptarnos a las condiciones variables del mercado y mejorar el rendimiento global en comparación con los enfoques convencionales.

De principiante a experto: El viaje esencial a través del trading con MQL5
¡Libera tu potencial! Estás rodeado de oportunidades. Descubra 3 secretos principales para iniciar su viaje hacia MQL5 o llevarlo al siguiente nivel. Vamos a hablar de consejos y trucos tanto para principiantes como para profesionales.

Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores
En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.