Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Алгоритм миграции животных — Animal Migration Optimization (AMO)

Алгоритм миграции животных — Animal Migration Optimization (AMO)

Статья посвящена алгоритму AMO, который моделирует процесс сезонной миграции животных в поисках оптимальных условий для жизни и размножения. Основные особенности AMO включают использование топологического соседства и вероятностный механизм обновления, что делает его простым в реализации и гибким для различных оптимизационных задач.
preview
Разработка системы репликации (Часть 39): Прокладываем путь (III)

Разработка системы репликации (Часть 39): Прокладываем путь (III)

Прежде, чем приступить ко второму этапу разработки, необходимо закрепить несколько идей. Знаете ли вы, как заставить MQL5 делать то, что вам необходимо? Пытались ли когда-нибудь выйти за рамки того, что содержится в документации? Если нет, то приготовьтесь. Потому что прямо сейчас мы будем делать то, чем большинство людей обычно не занимается.
preview
Разработка системы репликации (Часть 30): Проект советника — класс C_Mouse (IV)

Разработка системы репликации (Часть 30): Проект советника — класс C_Mouse (IV)

Сегодня мы изучим технику, которая может очень сильно помочь нам на разных этапах нашей профессиональной жизни в качестве программиста. Вопреки мнению многих, ограничена не сама платформа, а знания человека, который говорит об ограничениях. В данной статье будет рассказано о том, что с помощью здравого смысла и творческого подхода можно сделать платформу MetaTrader 5 гораздо более интересной и универсальной, не прибегая к созданию безумных программ или чего-то подобного, и создать простой, но безопасный и надежный код. Мы будем использовать свою изобретательность, чтобы изменить уже существующий код, не удаляя и не добавляя ни одной строки в исходный код.
preview
Разработка системы репликации (Часть 29): Проект советника — класс C_Mouse (III)

Разработка системы репликации (Часть 29): Проект советника — класс C_Mouse (III)

После улучшения класса C_Mouse, мы можем сосредоточиться на создании класса, призванного создать совершенно новую основу для обучения. Как уже упоминалось в начале статьи, мы не будем использовать наследование или полиморфизм для создания этого нового класса. Вместо этого мы изменим, а точнее, добавим новые объекты в ценовую линию. Именно этим мы и займемся в данный момент, а в следующей статье мы рассмотрим, как изменить исследования. Но мы сделаем всё это, не меняя код класса C_Mouse. Признаюсь, на практике было бы легче достичь этого с помощью наследования или полиморфизма. однако существуют и другие методы достижения такого же результата.
preview
Теория категорий (Часть 9): Действия моноидов

Теория категорий (Часть 9): Действия моноидов

Статья продолжает серию о реализации теории категорий в MQL5. В статье рассматриваются действия моноидов (monoid actions) как средство преобразования моноидов, описанных в предыдущей статье, для увеличения областей их применения.
preview
Матричная факторизация: моделирование, которое более практично

Матричная факторизация: моделирование, которое более практично

Вы могли не заметить, что моделирование матриц оказалось немного странным, так как указывались не строки и столбцы, а только столбцы. Это выглядит очень странно при чтении кода, выполняющего матричные факторизации. Если вы ожидали увидеть указанные строки и столбцы, то могли бы запутаться при попытке выполнить факторизацию. Более того, данный способ моделирования матриц не самый лучший. Это связано с тем, что когда мы моделируем матрицы таким образом, то сталкиваемся с некими ограничениями, которые заставляют нас использовать другие методы или функции, которые не были бы необходимы, если бы моделирование осуществлялось более подходящим способом.
preview
Разработка системы репликации (Часть 26): Проект советника — Класс C_Terminal

Разработка системы репликации (Часть 26): Проект советника — Класс C_Terminal

Мы уже можем начать создавать советника для использования в репликации/моделировании. Однако нам нужно нечто усовершенствованное, а не какое-то случайное решение. Несмотря на это, нас не должна пугать первоначальная сложность. Очень важно начать с чего-то, иначе в конечном итоге мы придем к тому, что размышляем о сложности задачи, даже не пытаясь ее преодолеть. Суть программирования именно в этом: преодолеть препятствия посредством изучения, тестирования и обширных исследований.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Упрощаем торговлю на новостях (Часть 2): Управляем рисками

Упрощаем торговлю на новостях (Часть 2): Управляем рисками

В этой статье мы добавим наследование в предыдущий и новый код. Для обеспечения эффективности будет внедрена новая структура базы данных. Кроме того, мы создадим класс по управлению рисками для расчета объемов.
preview
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.
preview
Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Статья представляет реализацию алгоритма выбора признаков, описанного в научной работе "FREL: Стабильный алгоритм выбора признаков" (FREL: A stable feature selection algorithm). Сам алгоритм называется "Взвешивание признаков как регуляризованное обучение на основе энергии" (Feature weighting as regularized energy based learning).
preview
Алгоритм оптимизации на основе искусственной экосистемы —  Artificial Ecosystem-based Optimization (AEO)

Алгоритм оптимизации на основе искусственной экосистемы — Artificial Ecosystem-based Optimization (AEO)

В статье рассматривается метаэвристический алгоритм AEO, который моделирует взаимодействия между компонентами экосистемы, создавая начальную популяцию решений и применяя адаптивные стратегии обновления, и подробно описываются этапы работы AEO, включая фазы потребления и разложения, а также различные стратегии поведения агентов. Статья знакомит с особенностями и преимуществами данного алгоритма.
preview
Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.
preview
Метод группового учета аргументов: реализация комбинаторного алгоритма на MQL5

Метод группового учета аргументов: реализация комбинаторного алгоритма на MQL5

В этой статье мы продолжаем изучение семейства алгоритмов группового учета аргументов. Реализуем средствами MQL5 комбинаторный алгоритм, а также его усовершенствованную версию — комбинаторный селективный алгоритм.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть IV): Оптимизация простой сеточной стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть IV): Оптимизация простой сеточной стратегии (I)

В четвертой части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. В этот раз будем совершенствовать советник Simple Hedge. Будем использовать математический анализ и подход грубой силы (brute force) чтобы оптимизировать стратегию. Эта статья углубляется в математическую оптимизацию стратегии и закладывает основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Разработка системы репликации (Часть 44): Проект Chart Trade (III)

Разработка системы репликации (Часть 44): Проект Chart Trade (III)

В предыдущей статье я объяснил, как можно управлять данными шаблона для их использования в OBJ_CHART. Там я лишь обозначил тему, не вдаваясь в подробности, поскольку в той версии работа была выполнена очень упрощенным способом. Это сделано для того, чтобы облегчить объяснение содержания, ведь несмотря на кажущуюся простоту многих вещей, некоторые из них не столь очевидны, а без понимания самой простой и основной части, вы не сможете по-настоящему разобраться в том, что мы делаем.
preview
Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Главное в этой статье — представление и объяснение класса C_ChartFloatingRAD. У нас есть индикатор Chart Trade, который работает довольно интересным образом. Как вы могли заметить, у нас на графике все еще достаточно небольшое количество объектов, и тем не менее, мы получили ожидаемое функционирование. Значения, присутствующие в индикаторе, можно редактировать. Вопрос в том, как это возможно? В этой статье все начнет проясняться.
preview
Методы оптимизации библиотеки ALGLIB (Часть I)

Методы оптимизации библиотеки ALGLIB (Часть I)

В статье познакомимся с методами оптимизации библиотеки ALGLIB для MQL5. Статья включает простые и наглядные примеры применения ALGLIB для решения задач оптимизации, что сделает процесс освоения методов максимально доступным. Мы подробно рассмотрим подключение таких алгоритмов, как BLEIC, L-BFGS и NS, и на их основе решим простую тестовую задачу.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Данные экономического календаря по умолчанию недоступны для тестирования с помощью советников в тестере стратегий. Мы рассмотрим, как базы данных могут помочь обойти это ограничение. В частности, мы увидим, как можно использовать базы данных SQLite для архивирования новостей Экономического календаря, чтобы советники, собранные с помощью Мастера, могли использовать их для генерации торговых сигналов.
preview
Разработка системы репликации (Часть 42): Проект Chart Trade (I)

Разработка системы репликации (Часть 42): Проект Chart Trade (I)

Давайте создадим что-нибудь поинтереснее. Не хочу портить сюрприз, поэтому следите за статьей, чтобы лучше понять. С самого начала этой серии о разработке системы репликации/моделирования, я говорил, что идея состоит в том, чтобы использовать платформу MetaTrader 5 одинаково как в разрабатываемой нами системе, так и на реальном рынке. Важно, чтобы это было сделано должным образом. Никто не хочет тренироваться и учиться сражаться, используя одни инструменты, в то время как во время боя ему придется пользоваться другими.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
preview
Построение экономических прогнозов: потенциальные возможности Python

Построение экономических прогнозов: потенциальные возможности Python

Как использовать экономические данные Всемирного банка для прогнозирования? Что будет если совместить модели ИИ и экономику?
preview
Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Как насчет изучения чего-то нового? В этой статье вы узнаете, как преобразовывать скрипты в сервисы, и почему полезно это делать.
preview
Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Устали тратить время на поиск того самого файла, который необходим для работы вашего приложения? Как насчет того, чтобы включить все в исполняемый файл? Так вы больше не будете тратить время на поиск необходимого. Знаю, что многие пользуются именно такой формой распространения и хранения вещей, но есть гораздо более подходящий способ. По крайней мере, что касается распространения исполняемых файлов и их хранения. Метод, который будет здесь представлен, может оказаться очень полезным, так как в качестве отличного помощника вы сможете использовать сам MetaTrader 5, а также MQL5. И это не так уж трудно и сложно для понимания.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.
preview
Разработка системы репликации (Часть 49): Все усложняется (I)

Разработка системы репликации (Часть 49): Все усложняется (I)

В этой статье мы немного усложним ситуацию. Используя то, что было показано в предыдущих статьях, мы начнем открывать доступ к файлу шаблона, чтобы пользователь мог использовать свой собственный шаблон. Однако я буду вносить изменения постепенно, так как также буду дорабатывать индикатор, чтобы снизить нагрузку на MetaTrader 5.
preview
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.
preview
Разработка системы репликации (Часть 51): Все усложняется (III)

Разработка системы репликации (Часть 51): Все усложняется (III)

В данной статье мы разберемся с одним из самых сложных вопросов сферы программирования на MQL5: как правильно получить ID графика, и почему иногда объекты не строятся на графике. Представленные здесь материалы носят исключительно дидактический характер. Ни в коем случае нельзя рассматривать приложение ни с какой иной целью, кроме как для изучения и освоения представленных концепций.
preview
Разработка системы репликации (Часть 52): Всё усложняется (IV)

Разработка системы репликации (Часть 52): Всё усложняется (IV)

В этой статье мы изменим указатель мыши, чтобы иметь возможность взаимодействовать с индикатором управления, поскольку он работает нестабильно.
preview
Методы оптимизации библиотеки Alglib (Часть II)

Методы оптимизации библиотеки Alglib (Часть II)

В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.
preview
Разработка системы репликации (Часть 53): Всё усложняется (V)

Разработка системы репликации (Часть 53): Всё усложняется (V)

В этой статье мы рассмотрим важную тему, которую мало кто понимает: Пользовательские события. Опасности. Преимущества и ошибки, вызванные такими элементами. Данная тема является ключевой для тех, кто хочет стать профессиональным программистом на MQL5 или любом другом языке. Поэтому мы сосредоточимся на MQL5 и MetaTrader 5.
preview
Разработка системы репликации (Часть 54): Появление первого модуля

Разработка системы репликации (Часть 54): Появление первого модуля

В этой статье мы рассмотрим, как собрать первый из действительно функциональных модулей для использования в системе репликации/моделирования, который также будет иметь общее назначение, чтобы служить и другим целям. Мы говорим о модуле индикатора мыши.