Статьи об интеграции MetaTrader 5 с помощью языка MQL5

icon

Задачи, которые встают перед трейдером, интересны и, зачастую, требуют нестандартных подходов. Здесь вы найдете статьи, в которых предлагаются самые неожиданные решения для оценки, анализа и обработки ценовых данных и результатов торговли. Подключение баз данных и ICQ, использование OpenCL и  социальных сетей, использование Delphi и C# - всё это затрагивают авторы предлагаемых статей.

Читайте, и вы узнаете, как использовать специализированные математические и нейронные пакеты, а также многое другое. Станьте автором и поделитесь уникальными знаниями с MQL5.community.

Новая статья
последние | лучшие
preview
Непрерывная скользящая оптимизация (Часть 8): Доработка программы и исправление найденных недочетов

Непрерывная скользящая оптимизация (Часть 8): Доработка программы и исправление найденных недочетов

По просьбам пользователей и читателей данного цикла статей, программа была модифицирована и теперь можно сказать, что в текущая статья содержит уже новую версию автооптимизатора. В автооптимизатор были внесены как запрашиваемые, так и новые улучшения, идеи которых пришли в момент корректировки программы.
preview
Нейросети — это просто (Часть 26): Обучение с подкреплением

Нейросети — это просто (Часть 26): Обучение с подкреплением

Продолжаем изучение методов машинного обучения. Данной статьей мы начинаем еще одну большую тему "Обучение с подкреплением". Данный подход позволяет моделям выстаивать определенные стратегии для решения поставленных задач. И мы рассчитываем, что это свойство обучения с подкреплением откроет перед нами новые горизонты построения торговых стратегий.
preview
Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).
Применение псевдошаблонов как альтернатива шаблонов С++
Применение псевдошаблонов как альтернатива шаблонов С++

Применение псевдошаблонов как альтернатива шаблонов С++

В статье описывается прием программирования, позволяющий обойтись без механизма шаблонов, при этом сохранив стиль программирования, присущий им. Рассмотрены особенности реализации шаблонов пользовательскими методами, прилагается готовый к эксплуатации код скрипта, создающий код на основе указанных шаблонов.
preview
Метамодели в машинном обучении и трейдинге: Оригинальный тайминг торговых приказов

Метамодели в машинном обучении и трейдинге: Оригинальный тайминг торговых приказов

Метамодели в машинном обучении: Автоматическое создание торговых систем практически без участия человека — Модель сама принимает решение как торговать и когда торговать.
Использование крешлогов для отладки собственных dll
Использование крешлогов для отладки собственных dll

Использование крешлогов для отладки собственных dll

25-30% всех крешлогов, поступающих от пользователей, возникают в результате ошибок выполнения функций, импортируемых из пользовательских dll.
preview
Разрабатываем мультивалютный советник (Часть 1): Совместная работа нескольких торговых стратегий

Разрабатываем мультивалютный советник (Часть 1): Совместная работа нескольких торговых стратегий

Различных торговых стратегий существует довольно много. С точки зрения диверсификации рисков и повышения устойчивости торговых результатов может оказаться полезным использовать несколько параллельно работающих стратегий. Но если каждая стратегия будет реализована в виде отдельного советника, то управлять их совместной работой на одном торговом счёте становится гораздо сложнее. Для решения этой проблемы желательно реализовать работу разных торговых стратегий в одном советнике.
Разработка социального технологического стартапа, часть II: Программируем клиент MQL5 REST
Разработка социального технологического стартапа, часть II: Программируем клиент MQL5 REST

Разработка социального технологического стартапа, часть II: Программируем клиент MQL5 REST

Сегодня мы окончательно оформим идею публикации торговых сигналов эксперта в Твиттере на основе PHP. Об этом мы начали говорить в первой части статьи. Мы соберем вместе отдельные части SDSS. Что касается клиентской стороны архитектуры системы, мы будем использовать новую функцию MQL5 WebRequest() для отправки торговых сигналов через HTTP.
Язык MQL как средство разметки графического интерфейса MQL-программ. Часть 2
Язык MQL как средство разметки графического интерфейса MQL-программ. Часть 2

Язык MQL как средство разметки графического интерфейса MQL-программ. Часть 2

В статье продолжается проверка новой концепции описания оконного интерфейса MQL-программ с помощью конструкций языка MQL. Автоматическое создание GUI на основе MQL-разметки предоставляет дополнительный функционал для кэширования и динамического порождения элементов, управления стилями, новых схем обработки событий. Прилагается усовершенствованная версия стандартной библиотеки элементов управления.
Популяционные алгоритмы оптимизации
Популяционные алгоритмы оптимизации

Популяционные алгоритмы оптимизации

Вводная статья об алгоритмах оптимизации (АО). Классификация. В статье предпринята попытка создать тестовый стенд (набор функций), который послужит в дальнейшем для сравнения АО между собой, и, даже, возможно, выявления самого универсального алгоритма из всех широко известных.
Язык MQL как средство разметки графического интерфейса MQL-программ (Часть 3). Дизайнер форм
Язык MQL как средство разметки графического интерфейса MQL-программ (Часть 3). Дизайнер форм

Язык MQL как средство разметки графического интерфейса MQL-программ (Часть 3). Дизайнер форм

В этой статье мы завершаем описание концепции построения оконного интерфейса MQL-программ с помощью конструкций языка MQL. Специальный графический редактор позволит интерактивно настраивать раскладку, состоящую из основных классов элементов GUI, и затем экспортировать её в MQL-описание для использования в вашем MQL-проекте. Представлено внутреннее устройство редактора и руководство пользователя. Исходные коды прилагаются.
Использование криптографии совместно с внешними приложениями
Использование криптографии совместно с внешними приложениями

Использование криптографии совместно с внешними приложениями

Рассмотрены вопросы шифровки / дешифровки объектов в MetaTrader-e и сторонних программах с целью выяснения условий, при которых одинаковые результаты будут получаться при одинаковых исходных данных.
preview
Использование AutoIt с MQL5

Использование AutoIt с MQL5

В статье рассматривается создание скриптов для терминала MetraTrader 5 путем интеграции MQL5 с AutoIt. Я покажу, как автоматизировать различные задачи с помощью пользовательского интерфейса терминала, а также представлю класс, использующий библиотеку AutoItX.
preview
Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.
Пишем Twitter-клиент для MetaTrader: Часть 2
Пишем Twitter-клиент для MetaTrader: Часть 2

Пишем Twitter-клиент для MetaTrader: Часть 2

Реализуем Twitter-клиент в виде MQL-класса, позволяющего отправлять твиты с картинками. Подключив всего один автономный include-файл, вы сможете публиковать твиты и выкладывать свои графики и сигналы.
Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере
Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере

Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере

Сегодня мы поговорим о том, как привязать терминал MetaTrader 5 к аккаунту в Твиттере для того, чтобы публиковать сигналы вашего эксперта. Мы разрабатываем Social Decision Support System (Социальную систему поддержки принятия решений), далее SDSS, в PHP на основе веб-сервиса RESTful. В основе этой идеи лежит концепция автоматической торговли или, так называемая торговля при помощи компьютеров. Мы хотим, чтобы автоматические торговые сигналы эксперта проходили через фильтры когнитивных способностей разума человека.
Работа с сетевыми функциями, или MySQL без DLL: Часть II - программа для мониторинга изменения свойств сигналов
Работа с сетевыми функциями, или MySQL без DLL: Часть II - программа для мониторинга изменения свойств сигналов

Работа с сетевыми функциями, или MySQL без DLL: Часть II - программа для мониторинга изменения свойств сигналов

В предыдущей части статьи мы ознакомились с реализацией коннектора MySQL. В этой части мы рассмотрим его применение на примере реализации сервиса сбора свойств сигналов и программы для просмотра их изменения с течением времени. Кроме того, реализованный пример может иметь практический смысл в том случае, если пользователю нужно наблюдать изменения свойств, которые не отображаются на веб-странице сигнала.
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Хотите получать твиты или публиковать свои торговые сигналы в Твиттере? Больше не нужно искать решения — в этой серии статей мы рассмотрим, как работать с Твиттером без использования DLL. Мы вместе реализуем Tweeter API с помощью MQL. В первой статье начнем с возможностей аутентификации и авторизации в с Twitter API.
preview
Язык визуального программиования ДРАКОН (Drakon) — средство общения для разработчика MQL и заказчика

Язык визуального программиования ДРАКОН (Drakon) — средство общения для разработчика MQL и заказчика

ДРАКОН — язык визуального программирования, специально разработанный для упрощения взаимодействия между специалистами разных отраслей (биологами, физиками, инженерами...) с программистами в российских космических проектах (например, при создании создание комплекса "Буран"). В этой статье я расскажу о том, как ДРАКОН делает создание алгоритмов доступным и интуитивно понятным, даже если вы никогда не сталкивались с кодом, а также - как заказчику легче объяснить свои мысли при заказе торговых роботов, а программисту - совершать меньше ошибок в сложных функциях.
preview
Разработка робота на Python и MQL5 (Часть 1): Препроцессинг данных

Разработка робота на Python и MQL5 (Часть 1): Препроцессинг данных

Разработка торгового робота на основе машинного обучения: подробное руководство. В первой статье цикла осуществлен сбор и подготовка данных и признаков. Для реализации проекта используется язык программирования Python и библиотеки, а также платформа MetaTrader 5.
preview
WebSocket для MetaTrader 5 — Использование Windows API

WebSocket для MetaTrader 5 — Использование Windows API

В этой статье мы используем WinHttp.dll, чтобы создать клиент WebSocket для MetaTrader 5-программ. В конечном итоге клиент должен быть выполнен в виде класса и протестирован во взаимодействии с WebSocket API от Binary.com.
preview
Регрессионные модели библиотеки Scikit-learn и их экспорт в ONNX

Регрессионные модели библиотеки Scikit-learn и их экспорт в ONNX

В данной статье мы рассмотрим применение регрессионных моделей пакета Scikit-learn, попробуем их сконвертировать в ONNX-формат и использовать полученные модели в программах на MQL5. Также мы сравним точность работы оригинальных моделей и их ONNX-версий для float и double. Кроме того, мы рассмотрим ONNX-представление регресионных моделей, это позволит лучше понять их внутреннее устройство и принцип работы.
preview
Работа с матрицами и векторами в MQL5

Работа с матрицами и векторами в MQL5

Для решения математических задач в MQL5 были добавлены матрицы и векторы. Новые типы имеют встроенные методы для написания краткого и понятного кода, который близок к математической записи. Массивы — это хорошо, но матрицы во многих случаях лучше.
preview
Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.
preview
Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.
preview
Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.
preview
Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.
preview
Бегущая строка котировок: базовая версия

Бегущая строка котировок: базовая версия

Здесь я покажу, как создать в терминале бегущую строку, которая обычно используется для отображения котировок на бирже. Создавать такую строку мы будем только при помощи MQL5, не используя никакое другое внешнее программирование.
preview
Кластеризация временных рядов в причинно-следственном выводе

Кластеризация временных рядов в причинно-следственном выводе

Алгоритмы кластеризации в машинном обучении — это важные алгоритмы обучения без учителя, которые позволяют разделять исходные данные на группы с похожими наблюдениями. Используя эти группы, можно проводить анализ рынка для конкретного кластера, искать наиболее устойчивые кластеры на новых данных, а также делать причинно-следственный вывод. В статье предложен авторский метод кластеризации временных рядов на языке Python.
preview
Нейросети — это просто (Часть 25): Практикум Transfer Learning

Нейросети — это просто (Часть 25): Практикум Transfer Learning

В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
preview
Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?
preview
Показатель склонности (Propensity score) в причинно-следственном выводе

Показатель склонности (Propensity score) в причинно-следственном выводе

В статье рассматривается тема матчинга в причинно-следственном выводе. Матчинг используется для сопоставления похожих наблюдений в наборе данных. Это необходимо для правильного определения каузальных эффектов, избавления от предвзятости. Автор рассказывает, как это помогает в построении торговых систем на машинном обучении, которые становятся более устойчивыми на новых данных, на которых не обучались. Центральная роль отводится показателю склонности, который широко используется в причинно-следственном выводе.
preview
Непрерывная скользящая оптимизация (Часть 6): Логическая часть автооптимизатора и его структура

Непрерывная скользящая оптимизация (Часть 6): Логическая часть автооптимизатора и его структура

Описывая создание автоматической скользящей оптимизации, мы добрались до внутренней структуры самого автооптимизатора. Данная статья может быть полезна тем, кто пожелает сам доработать созданный проект, либо же просто желает разобраться в логики функционирования программы. В текущей статье при помощи UML диаграмм представлена внутренняя структура проекта и взаимосвязи объектов между собой. Также рассматривается процесс запуска оптимизаций, но пока без описания процесса реализации оптимизатора.
preview
Кросс-валидация и основы причинно-следственного вывода в моделях CatBoost, экспорт в ONNX формат

Кросс-валидация и основы причинно-следственного вывода в моделях CatBoost, экспорт в ONNX формат

В данной статье предложен авторский способ создания ботов с использованием машинного обучения.
preview
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
preview
Причинно-следственный вывод в задачах классификации временных рядов

Причинно-следственный вывод в задачах классификации временных рядов

В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.
preview
Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.
preview
Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Удивительная способность сорняков выживать в самых разнообразных условиях послужило идеей создания мощного алгоритма оптимизации. IWO — один из лучших среди рассмотренных ранее.
preview
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.