Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
-- Quanto mais você tem, menos percebe.
Conteúdo:
- O que é redução de dimensionalidade?
- Dados de alta dimensionalidade
- A maldição da dimensionalidade
- O que é TruncatedSVD?
- Cálculo da função de variância explicada
- Redução de dimensionalidade usando TruncatedSVD
- Vantagens do TruncatedSVD
- Vantagens do NMF
- Desvantagens do TruncatedSVD
- Desvantagens do NMF
- Compromissos na redução de dimensionalidade
- Perguntas frequentes sobre redução de dimensionalidade
Redução de dimensionalidade
Segundo a Wikipédia a redução de dimensionalidade é a transformação de dados que consiste na diminuição do número de variáveis ao obter variáveis principais.
Trabalhar em espaços multidimensionais traz muitas complexidades, pois dados não processados frequentemente são esparsos e, consequentemente, sujeitos à chamada maldição da dimensionalidade. Além disso, a análise de dados geralmente é quase impossível do ponto de vista computacional (devido à complexidade de controle e processamento). A redução de dimensionalidade é frequentemente aplicada em áreas que lidam com um grande número de observações e/ou um grande número de variáveis, como processamento de sinais, reconhecimento de voz, neuroinformática e bioinformática (link).
Vamos examinar o conceito de redução de dimensionalidade e sua aplicação.
Dados de alta dimensionalidade
Sejamos honestos: na maioria das aplicações reais, muitos conjuntos de dados usados para construir modelos de aprendizado de máquina têm um número muito grande de funções ou variáveis (dimensões). Dados de alta dimensionalidade podem levar a vários problemas, como aumento da complexidade computacional, risco de ajuste excessivo e dificuldades de visualização. Normalmente, os conjuntos de dados com os quais lidamos contêm 5 variáveis independentes!
Vamos supor que pegamos todos os 38 buffers de indicadores padrão da plataforma MetaTrader 5. Assim, teríamos dados para 56 buffers. Isso é uma amostra muito grande.
A maldição da dimensionalidade
Essa maldição é real, e para aqueles que não acreditam, tentem implementar um modelo de regressão linear com um grande número de variáveis independentes correlacionadas.A presença de funções fortemente correlacionadas pode fazer com que os modelos de aprendizado de máquina capturem ruídos e padrões específicos presentes nos dados de treinamento, que podem não se generalizar bem para novos dados desconhecidos.
Maldição da dimensionalidade refere-se a problemas que surgem ao trabalhar com dados multidimensionais, incluindo distribuição esparsa de dados, exigências computacionais elevadas e risco de ajuste excessivo do modelo (link).
Vamos demonstrar isso claramente com um exemplo de modelo de regressão linear:
Como os primeiros 13 indicadores no arquivo CSV são de tendência, é provável que eles se correlacionem entre si, bem como com o mercado, apesar de terem diferentes magnitudes de medição.
Ao usar apenas 10 indicadores de tendência para prever os preços de fechamento em 100 barras usando nosso modelo de regressão linear:
matrix_utils.TrainTestSplitMatrices(data, train_x, train_y, test_x, test_y); lr.fit(train_x, train_y, NORM_MIN_MAX_SCALER); vector preds = lr.predict(train_x); Print("Train acc = ",metrics.r_squared(train_y, preds));
o modelo mostrou uma precisão de 92,2% na fase de treinamento.
IH 0 16:02:57.760 dimension reduction test (EURUSD,H1) Train acc = 0.9222314640780123
Até as previsões foram tão precisas.
KE 0 07:10:55.652 GetAllIndicators Data (EURUSD,H1) Actuals GS 0 07:10:55.652 GetAllIndicators Data (EURUSD,H1) [1.100686090182938,1.092937381937508,1.092258894809645,1.092946246629209,1.092958015748051,1.093392517797872,1.091850551839335,1.093040013995282,1.10067748979471,1.09836069904319,1.100275794247118,1.09882067865937,1.098572498565924,1.100543446136921,1.093174625248424,1.092435707204331,1.094128601953777,1.094192935809526,1.100305866167228,1.098452358470866,1.093010702771546,1.098612431849777,1.100827466038129,1.092880150279397,1.092600810699407,1.098722104612313,1.100707460497776,1.09582736814953,1.093765475161778,1.098767398966827,1.099091982657956,1.1006214183736,1.100698195592653,1.092047903797313,1.098661598784805,1.098489471676998,1.0997812203466,1.091954251247136,1.095870956581002,1.09306319770129,1.092915244023817,1.09488564050598,1.094171202526975,1.092523345374652,1.100564904733422,1.094200831112628,1.094001716368673,1.098530017588284,1.094081896433971,1.099230887219729,1.092892028948739,1.093709694144579,1.092862170694582,1.09148709705318,1.098520929394599,1.095105152264984,1.094272325978734,1.098468177450342,1.095849714911251,1.097952718476183,1.100746388049607,1.100114369109941,1.10052138086191,1.096938196194811,1.099992890418429,1.093106549957034,1.095523586088275,1.092801661288758,1.095956895328893,1.100419992807803] PO 0 07:10:55.652 GetAllIndicators Data (EURUSD,H1) Preds DH 0 07:10:55.652 GetAllIndicators Data (EURUSD,H1) [1.10068609018278,1.092937381937492,1.092258894809631,1.09294624662921,1.092958015748061,1.093392517797765,1.091850551839298,1.093040013995258,1.100677489794526,1.098360699043097,1.100275794246983,1.098820678659222,1.09857249856584,1.1005434461368,1.093174625248397,1.09243570720428,1.094128601953754,1.094192935809492,1.100305866167089,1.098452358470756,1.09301070277155,1.098612431849647,1.100827466038003,1.092880150279385,1.092600810699346,1.098722104612175,1.100707460497622,1.095827368149497,1.093765475161723,1.098767398966682,1.099091982657809,1.100621418373435,1.100698195592473,1.092047903797267,1.098661598784675,1.098489471676911,1.099781220346472,1.091954251247108,1.095870956580967,1.09306319770119,1.092915244023811,1.094885640505868,1.094171202526922,1.092523345374596,1.100564904733304,1.094200831112605,1.094001716368644,1.098530017588172,1.094081896433954,1.099230887219588,1.092892028948737,1.093709694144468,1.092862170694582,1.091487097053125,1.098520929394468,1.09510515226494,1.094272325978626,1.098468177450255,1.095849714911142,1.097952718476091,1.100746388049438,1.100114369109807,1.100521380861786,1.096938196194706,1.099992890418299,1.093106549956975,1.09552358608823,1.092801661288665,1.095956895328861,1.100419992807666]
Acho que podemos concordar que isso é bom demais para ser verdade. Apesar de o modelo ter mostrado uma precisão impressionante de 87,5%, na amostra de teste a precisão caiu cerca de 5%.
IJ 0 16:02:57.760 dimension reduction test (EURUSD,H1) Test acc = 0.8758590697252272
Podemos usar o método de redução de dimensionalidade mais popular, a análise de componentes principais (Principal Component Analysis, PCA), para diminuir as dimensões do nosso conjunto de dados, que agora contém 10 colunas.
//--- Reduce dimension pca = new CPCA(8); //Reduce the dimensions of the data to 8 columns data = pca.fit_transform(data); pca.extract_components(data, CRITERION_SCREE_PLOT);
Como resultado, obtivemos um modelo de regressão linear com uma precisão de 88,98% durante o treinamento e 89,991% durante o teste. A precisão não diminuiu.
DJ 0 16:03:23.890 dimension reduction test (EURUSD,H1) Train acc = 0.8898608919375138 RH 0 16:03:23.890 dimension reduction test (EURUSD,H1) Test acc = 0.8991693574000851
Ainda é um modelo sobreajustado, mas é muito melhor do que o modelo com 92% de precisão quando se trata de capacidade de generalização, o que é extremamente importante para um modelo de ML. Você pode reduzir ainda mais a dimensionalidade para ver quais medições de dados produziram os melhores resultados fora da amostra.
Objetivos da redução de dimensionalidade
- Eficiência computacional — a redução da dimensionalidade pode acelerar o treinamento e a execução de algoritmos de aprendizado de máquina.
- Melhoria da capacidade de generalização — ao reduzir a dimensionalidade, o modelo pode generalizar melhor novos dados desconhecidos, como vimos no exemplo do modelo de regressão linear.
- Visualização — dados com menos dimensões são mais fáceis de visualizar e interpretar, o que facilita o entendimento humano.
O que é TruncatedSVD?
A decomposição em valores singulares truncada (TruncatedSVD) é um método de redução de dimensionalidade que pode preservar grande parte da informação original. Este método é especialmente útil em casos onde os dados têm um grande número de funções, dificultando a execução de cálculos eficientes ou a visualização dos dados.
É uma variação da decomposição em valores singulares (SVD), que aproxima a matriz original preservando apenas os k maiores valores singulares e seus vetores singulares correspondentes.
Teoria:
Fonte da imagem: Wikipedia
Para uma matriz com dimensão x , a decomposição singular é dada pela fórmula:
Onde:
— matriz ortogonal × (vetores singulares esquerdos),
— matriz diagonal × com valores singulares na diagonal,
— matriz ortogonal × (vetores singulares direitos).
O SVD truncado preserva apenas os k maiores valores singulares e os vetores correspondentes:
Onde:
— matriz ×
— matriz diagonal ×
matriz ×
Implementação:
matrix CTruncatedSVD::fit_transform(matrix &X) { n_features = X.Cols(); if (m_components>n_features) { printf("%s Number of dimensions K[%d] is supposed to be <= number of features %d",__FUNCTION__,m_components,n_features); this.m_components = (uint)n_features; } // Center the data (subtract mean) matrix X_centered = CDimensionReductionHelpers::subtract(X, X.Mean(0)); // Compute the covariance matrix matrix cov_matrix = X_centered.Cov(false); // Perform SVD on the covariance matrix matrix U, Vt; vector Sigma; if (!X_centered.SVD(U,Vt,Sigma)) Print(__FUNCTION__," Line ",__LINE__," Failed to calculate SVD Err=",GetLastError()); this.components_ = CDimensionReductionHelpers::Slice(Vt, this.m_components).Transpose(); if (MQLInfoInteger(MQL_DEBUG)) Print("components\n",CDimensionReductionHelpers::Slice(Vt, this.m_components),"\ncomponents_T\n",this.components_); this.explained_variance_ = MathPow(CDimensionReductionHelpers::Slice(Sigma, this.m_components), 2) / (X.Rows() - 1); return X_centered.MatMul(components_); }
No MQL5, existe um método embutido para calcular a decomposição de matriz por valores singulares.
// Singular Value Decomposition. bool matrix::SVD( matrix& U, // unitary matrix matrix& V, // unitary matrix vector& singular_values // singular values vector );
A função fit_transform faz o seguinte:
- Centraliza os dados, subtraindo o valor médio.
- Calcula a matriz de covariância dos dados centralizados (não importa).
- Executa a decomposição SVD na matriz de covariância.
- Preserva os k maiores valores singulares e seus vetores.
- Constrói a representação da matriz original com dimensões reduzidas.
Cálculo da função de variância explicada
A função calcula a variância total somando os quadrados de todos os valores singulares.
ulong CTruncatedSVD::_select_n_components(vector &singular_values) { double total_variance = MathPow(singular_values.Sum(), 2); vector explained_variance_ratio = MathPow(singular_values, 2).CumSum() / total_variance; if (MQLInfoInteger(MQL_DEBUG)) Print(__FUNCTION__," Explained variance ratio ",explained_variance_ratio); vector k(explained_variance_ratio.Size()); for (uint i=0; i<k.Size(); i++) k[i] = i+1; plt.ScatterCurvePlots("Explained variance plot",k,explained_variance_ratio,"variance","components","Variance"); return explained_variance_ratio.ArgMax() + 1; //Choose k for maximum explained variance }A função recebe como entrada uma matriz de valores singulares (singular_values). Esses valores singulares são obtidos como resultado da decomposição de matriz por valores singulares (SVD).
Em seguida, a função seleciona o número de componentes (k), encontrando o número de componentes k com a maior variância. Isso é feito na seguinte linha de código:
explained_variance_ratio.ArgMax() + 1;
Precisamos modificar a função fit_transform, permitindo a descoberta do melhor número de componentes(quando não especificado) para reduzir a dimensionalidade dos dados e aplicar o número de componentes para a decomposição Truncated SVD.
matrix CTruncatedSVD::fit_transform(matrix &X) { n_features = X.Cols(); if (m_components>n_features) { printf("%s Number of dimensions K[%d] is supposed to be <= number of features %d",__FUNCTION__,m_components,n_features); this.m_components = (uint)n_features; } // Center the data (subtract mean) matrix X_centered = CDimensionReductionHelpers::subtract(X, X.Mean(0)); // Compute the covariance matrix matrix cov_matrix = X_centered.Cov(false); // Perform SVD on the covariance matrix matrix U, Vt; vector Sigma; if (!cov_matrix.SVD(U,Vt,Sigma)) Print(__FUNCTION__," Line ",__LINE__," Failed to calculate SVD Err=",GetLastError()); if (m_components == 0) { m_components = (uint)this._select_n_components(Sigma); Print(__FUNCTION__," Best value of K = ",m_components); } this.components_ = CDimensionReductionHelpers::Slice(Vt, this.m_components).Transpose(); if (MQLInfoInteger(MQL_DEBUG)) Print("components\n",CDimensionReductionHelpers::Slice(Vt, this.m_components),"\ncomponents_T\n",this.components_); this.explained_variance_ = MathPow(CDimensionReductionHelpers::Slice(Sigma, this.m_components), 2) / (X.Rows() - 1); return X_centered.MatMul(components_); }
O valor de k padrão é zero.
CTruncatedSVD::CTruncatedSVD(uint k=0) :m_components(k) { }
Redução de dimensionalidade usando TruncatedSVD
Agora, vamos ver como os dados se comportam quando reduzidos em dimensão usando a decomposição Truncated SVD:
truncated_svd = new CTruncatedSVD(); data = truncated_svd.fit_transform(data); Print("Reduced matrix\n",data); //--- matrix train_x, test_x; vector train_y, test_y; data = matrix_utils.concatenate(data, target); //add the target variable to the dataset that is either normalized or not matrix_utils.TrainTestSplitMatrices(data, train_x, train_y, test_x, test_y, 0.7, 42); lr.fit(train_x, train_y, NORM_STANDARDIZATION); //training Linear regression model vector preds = lr.predict(train_x); //Predicting the training data Print("Train acc = ",metrics.r_squared(train_y, preds)); //Measuring the performance preds = lr.predict(test_x); //predicting the test data Print("Test acc = ",metrics.r_squared(test_y, preds)); //measuring the performance
Resultado
LH 0 20:13:41.385 dimension reduction test (EURUSD,H1) CTruncatedSVD::_select_n_components Explained variance ratio [0.2399955100411572,0.3875113031818686,0.3903532427910986,0.3929609228375971,0.3932960517565894,0.3933072531960168,0.3933072531960282,0.3933072531960282,0.3933072531960282,0.3933072531960282] EH 0 20:13:41.406 dimension reduction test (EURUSD,H1) CTruncatedSVD::fit_transform Best value of K = 7 ... ... ... MR 0 20:13:41.407 dimension reduction test (EURUSD,H1) Train acc = 0.8934645199970468 HP 0 20:13:41.407 dimension reduction test (EURUSD,H1) Test acc = 0.8988671205298875
Resultados surpreendentes e estáveis: 89,3% de precisão no treinamento e 89,8% no teste. E quanto ao NMF?
O que é NMF?
NMF significa fatoração de matriz não negativa. É um método de redução de dimensionalidade que fatoriza uma matriz em duas matrizes não negativas. O objetivo do NMF é representar a matriz original como o produto de duas matrizes de menor dimensão, onde todos os elementos são não negativos.
Dada uma matriz de entrada X com dimensão m×n, o método NMF a fatoriza em duas matrizes — W e H. Então:
Onde:
é uma matriz × , onde k é o número de componentes ou características.
representa uma matriz × .
Ambas e têm entradas não negativas, e essa restrição de não negatividade torna o NMF especialmente adequado para trabalhar com dados naturalmente não negativos: imagens, dados de texto, espectrogramas.
A fatoração é alcançada minimizando a norma de Frobenius da diferença entre a matriz original e sua aproximação × . Matematicamente, isso pode ser expresso assim:
onde significa a norma de Frobenius.
Implementação:
Método de transformação
matrix CNMF::transform(matrix &X) { n_features = X.Cols(); if (m_components>n_features) { printf("%s Number of dimensions K[%d] is supposed to be <= number of features %d",__FUNCTION__,m_components,n_features); this.m_components = (uint)n_features; } if (this.W.Rows()==0 || this.H.Rows()==0) { Print(__FUNCTION__," Model not fitted. Call fit method first."); matrix mat={}; return mat; } return X.MatMul(this.H.Transpose()); }
A função transform transforma novos dados X, usando os componentes NMF já estabelecidos.
Método fit-transform
matrix CNMF::fit_transform(matrix &X, uint k=2) { ulong m = X.Rows(), n = X.Cols(); double best_frobenius_norm = DBL_MIN; m_components = m_components == 0 ? (uint)n : k; //--- Initialize Random values this.W = CMatrixutils::Random(0,1, m, this.m_components, this.m_randseed); this.H = CMatrixutils::Random(0,1,this.m_components, n, this.m_randseed); //--- Update factors vector loss(this.m_max_iter); for (uint i=0; i<this.m_max_iter; i++) { // Update W this.W *= MathAbs((X.MatMul(this.H.Transpose())) / (this.W.MatMul(this.H.MatMul(this.H.Transpose()))+ 1e-10)); // Update H this.H *= MathAbs((this.W.Transpose().MatMul(X)) / (this.W.Transpose().MatMul(this.W.MatMul(this.H))+ 1e-10)); loss[i] = MathPow((X - W.MatMul(H)).Flat(1), 2); // Calculate Frobenius norm of the difference double frobenius_norm = (X - W.MatMul(H)).Norm(MATRIX_NORM_FROBENIUS); if (MQLInfoInteger(MQL_DEBUG)) printf("%s [%d/%d] Loss = %.5f frobenius norm %.5f",__FUNCTION__,i+1,m_max_iter,loss[i],frobenius_norm); // Check convergence if (frobenius_norm < this.m_tol) break; } return this.W.MatMul(this.H); }
O método fit_transform realiza a fatoração NMF na matriz de entrada X e retorna o produto das matrizes W e H.
Diferentemente do Truncated SVD, para o qual conseguimos escrever código para determinar o número de componentes e aplicá-lo a nós mesmos, facilitando o uso da biblioteca, o algoritmo de aprendizado NMF funciona de outra maneira. Ele requer repetições de n iterações para encontrar os melhores valores para o algoritmo. Durante esse ciclo, o número de componentes k deve permanecer o mesmo, portanto, a função fit_transform aceita o valor k dos componentes como um de seus argumentos.
Podemos obter o melhor número de componentes para o algoritmo de fatoração de matriz não negativa usando a função select_best_components:
uint CNMF::select_best_components(matrix &X) { uint best_components = 1; this.m_components = (uint)X.Cols(); vector explained_ratio(X.Cols()); for (uint k = 1; k <= X.Cols(); k++) { // Calculate explained variance or other criterion matrix X_reduced = fit_transform(X, k); // Calculate explained variance as the ratio of squared Frobenius norms double explained_variance = 1.0 - (X-X_reduced).Norm(MATRIX_NORM_FROBENIUS) / (X.Norm(MATRIX_NORM_FROBENIUS)); if (MQLInfoInteger(MQL_DEBUG)) printf("k %d Explained Var %.5f",k,explained_variance); explained_ratio[k-1] = explained_variance; } return uint(explained_ratio.ArgMax()+1); }
Devido à natureza randômica de ambas as matrizes — Basic e Coefficient — os resultados do algoritmo iterativo multiplicativo também serão valores aleatórios, então o resultado deve ser imprevisível, a menos que o estado aleatório seja definido como um valor maior que zero.
class CNMF { protected: uint m_components; uint m_max_iter; int m_randseed; ulong n_features; matrix W; //Basic matrix matrix H; //coefficient matrix double m_tol; //loss tolerance public: CNMF(uint max_iter=100, double tol=1e-4, int random_state=-1); ~CNMF(void); matrix fit_transform(matrix &X, uint k=2); matrix transform(matrix &X); uint select_best_components(matrix &X); };
Redução de dimensionalidade usando NMF
Agora, vamos ver como os dados se comportam quando reduzidos em dimensão usando a fatoração de matriz não negativa:
nmf = new CNMF(30); data = nmf.fit_transform(data, 10); Print("Reduced matrix\n",data); //--- matrix train_x, test_x; vector train_y, test_y; data = matrix_utils.concatenate(data, target); //add the target variable to the dataset that is either normalized or not matrix_utils.TrainTestSplitMatrices(data, train_x, train_y, test_x, test_y, 0.7, 42); lr.fit(train_x, train_y, NORM_STANDARDIZATION); //training Linear regression model vector preds = lr.predict(train_x); //Predicting the training data Print("Train acc = ",metrics.r_squared(train_y, preds)); //Measuring the performance preds = lr.predict(test_x); //predicting the test data Print("Test acc = ",metrics.r_squared(test_y, preds)); //measuring the performance
Resultados:
DG 0 11:51:07.197 dimension reduction test (EURUSD,H1) Best k components = 10 LG 0 11:51:07.197 dimension reduction test (EURUSD,H1) CNMF::fit_transform [1/30] Loss = 187.40949 frobenius norm 141.12462 EG 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [2/30] Loss = 106.49597 frobenius norm 130.94039 KS 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [3/30] Loss = 84.38553 frobenius norm 125.05413 OS 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [4/30] Loss = 67.07345 frobenius norm 118.96900 OR 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [5/30] Loss = 52.50290 frobenius norm 112.46587 LR 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [6/30] Loss = 40.14937 frobenius norm 105.48081 RR 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [7/30] Loss = 29.79307 frobenius norm 98.11626 IR 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [8/30] Loss = 21.32224 frobenius norm 90.63011 NS 0 11:51:07.198 dimension reduction test (EURUSD,H1) CNMF::fit_transform [9/30] Loss = 14.63453 frobenius norm 83.36462 HL 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [10/30] Loss = 9.58168 frobenius norm 76.62838 NL 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [11/30] Loss = 5.95040 frobenius norm 70.60136 DM 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [12/30] Loss = 3.47775 frobenius norm 65.31931 LM 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [13/30] Loss = 1.88772 frobenius norm 60.72185 EN 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [14/30] Loss = 0.92792 frobenius norm 56.71242 RO 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [15/30] Loss = 0.39182 frobenius norm 53.19791 NO 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [16/30] Loss = 0.12468 frobenius norm 50.10411 NH 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [17/30] Loss = 0.01834 frobenius norm 47.37568 KI 0 11:51:07.199 dimension reduction test (EURUSD,H1) CNMF::fit_transform [18/30] Loss = 0.00129 frobenius norm 44.96962 KI 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [19/30] Loss = 0.02849 frobenius norm 42.84850 MJ 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [20/30] Loss = 0.07289 frobenius norm 40.97668 RJ 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [21/30] Loss = 0.11920 frobenius norm 39.31975 QK 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [22/30] Loss = 0.15954 frobenius norm 37.84549 FD 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [23/30] Loss = 0.19054 frobenius norm 36.52515 RD 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [24/30] Loss = 0.21142 frobenius norm 35.33409 KE 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [25/30] Loss = 0.22283 frobenius norm 34.25183 PF 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [26/30] Loss = 0.22607 frobenius norm 33.26170 GF 0 11:51:07.200 dimension reduction test (EURUSD,H1) CNMF::fit_transform [27/30] Loss = 0.22268 frobenius norm 32.35028 NG 0 11:51:07.201 dimension reduction test (EURUSD,H1) CNMF::fit_transform [28/30] Loss = 0.21417 frobenius norm 31.50679 CG 0 11:51:07.201 dimension reduction test (EURUSD,H1) CNMF::fit_transform [29/30] Loss = 0.20196 frobenius norm 30.72260 CP 0 11:51:07.201 dimension reduction test (EURUSD,H1) CNMF::fit_transform [30/30] Loss = 0.18724 frobenius norm 29.99074 ... ... FS 0 11:51:07.201 dimension reduction test (EURUSD,H1) Train acc = 0.604329883526616 IR 0 11:51:07.202 dimension reduction test (EURUSD,H1) Test acc = 0.5115967009955317
A função select_best_components encontrou que o melhor número de componentes é 10, o mesmo número de colunas no conjunto de dados que fornecemos. Para ser justo, a precisão dos dados obtidos pelo NMF ao ser aplicada ao modelo de regressão linear produziu resultados medianos: 61% durante o treinamento e 51% durante o teste. Antes de concluirmos que o TruncatedSVD é o claro vencedor nesta situação, devemos reconhecer que a fatoração de matriz não negativa (NMF) requer um grande volume de programação. Com a implementação correta e utilizando um melhor algoritmo de aprendizado, como o gradiente descendente estocástico (SGD) ou qualquer outro algoritmo de aprendizado inteligente, ele pode criar um melhor conjunto de dados, mas para implementações básicas de ambos os algoritmos! O vencedor é o Truncated SVD (no papel)
Vamos ver como ambos os métodos funcionam com grandes volumes de dados:
Aplicaremos todos os dados aos nossos algoritmos e mediremos como eles funcionam em todo o conjunto de dados. Isso dará uma ideia de qual método deve ser aplicado para obter os dados mais compactos para nosso modelo de regressão linear.
Truncated SVD vs NMF - comparação
Desta vez, nenhum dado foi filtrado, mas sim todos os indicadores ao usar o Truncated SVD.
void TrainTestLR(int start_bar=1) { string names; matrix data = indicators.GetAllBuffers(names, start_bar, buffer_size); //--- Getting close values MqlRates rates[]; ArraySetAsSeries(rates, true); CopyRates(Symbol(), PERIOD_CURRENT, start_bar, buffer_size, rates); double targ_Arr[]; ArrayResize(targ_Arr, buffer_size); for (int i=0; i<buffer_size; i++) targ_Arr[i] = rates[i].close; vector target = matrix_utils.ArrayToVector(targ_Arr); //--- Dimension reduction process switch(dimension_redux) { case NMF: { nmf = new CNMF(nmf_iterations); uint k = nmf.select_best_components(data); //Print("Best k components = ",k); data = nmf.fit_transform(data, k); } break; case TRUNC_SVD: truncated_svd = new CTruncatedSVD(); data = truncated_svd.fit_transform(data); break; case None: break; } //--- Print(EnumToString(dimension_redux)," Reduced matrix[",data.Rows(),"x",data.Cols(),"]\n",data); //--- matrix train_x, test_x; vector train_y, test_y; data = matrix_utils.concatenate(data, target); //add the target variable to the dimension reduced data matrix_utils.TrainTestSplitMatrices(data, train_x, train_y, test_x, test_y, 0.7, 42); lr.fit(train_x, train_y, NORM_STANDARDIZATION); //training Linear regression model vector preds = lr.predict(train_x); //Predicting the training data Print("Train acc = ",metrics.r_squared(train_y, preds)); //Measuring the performance preds = lr.predict(test_x); //predicting the test data Print("Test acc = ",metrics.r_squared(test_y, preds)); //measuring the performance }
Nos parâmetros de entrada, escolhemos TRUNC_SVD:
Os resultados foram impressionantes, como esperado para o método Truncated SVD. Os dados foram comprimidos em 11 componentes úteis no ponto central do gráfico abaixo.
Resultado
KI 0 13:35:07.262 dimension reduction test (EURUSD,H1) [56x56] Covariance HS 0 13:35:07.262 dimension reduction test (EURUSD,H1) [[1.659883222775595e-05,0.03248108864728622,0.002260592127494286,0.002331226815118805,0.0473802958063898,0.009411152185446843,-0.0007144995075063451,1.553267567351765e-05,1.94117385500497e-05,1.165361279698562e-05,1.596183979153003e-05,1.56892102141789e-05,1.565786314082391e-05,1.750827764889262e-05,1.568797564383075e-05,1.542116504856457e-05,1.305965012072059e-05,1.184306318548672e-05,0,1.578309112710041e-05,1.620880130984106e-05,3.200794587841053e-07,1.541769717649654e-05,1.582152318930163e-05,5.986572608120619e-07,-7.489818958341503e-07,-1.347949386573036e-07,1.358668593395908,-0.0551110816439555,7.279528408421348e-05,-0.0001838813666139953,5.310112938097826e-07,6.759105066381161e-07,1.755806692036581e-05,-1.448992128283333e-07,0.003656398187537544,-2.423948560741599e-05,1.65581437719033e-05,-0.01251289868226832,-0.007951606834421109,8.315844054428887e-08,-0.02211745766272421,58.3452835083685,-0.004138620879652527,115.0719348800515,0.7113815226449098,-3.467421230325816e-07,1.456828920113124e-05,1.536603660063518e-05,1.576222466715787e-05,6.85495465028602e-07,0,0,1.264184887739262e-06,-8.035590653384948e-05,-6.948836688267333e-07] DG 0 13:35:07.262 dimension reduction test (EURUSD,H1) [0.03248108864728622,197.2946284096305,47.5593359902222,-70.84984591299812,113.00968468357,80.50832448214619,-85.73100643892406,0.01887146397983594,0.03089371802428824,0.006849209935383654,0.03467670330041064,0.02416916876582018,0.02412087871833598,0.0345064443900023,0.03070601018237932,0.02036445858890056,0.009641324468627534,0.006973716378187099,0,0.02839705603036633,0.02546230398502955,0.000344615196142723,0.04030780408653764,0.02543558488321825,0.0003508232190957864,0.00918131954773614,0.009950700238139187,18501.50888551419,578.0227911644578,1.963532857377992,7.661630153435527,0.006966837168084083,0.004556433245004339,2.562261625497797,0.002410403923079745,118.382177007498,1.555763207775421,1.620640369180333,97.88352837129584,116.7606184094667,0.0006817870698682788,163.5401896749969,108055.4673427991,140.7005993870342,173684.2642498043,3567.96895955429,0.0026091195479834,0.01088219157686945,0.01632411390047346,0.02372834986595739,0.02071124643451263,0,0,0.003953688163493562,-1.360529605248643,-0.04542261766857811] IL 0 13:35:07.262 dimension reduction test (EURUSD,H1) [0.002260592127494286,47.5593359902222,39.19958980374253,-35.49971367926001,7.967839162735706,33.38887983973432,-33.90876164339727,-0.001453063639065681,-0.000297822858867019,-0.002608304419264346,0.002816269112655834,-0.0006711791217058063,-0.0006698381044796457,0.002120545460717355,0.002300146098203005,0.0001826452994732207,-0.0003768483866125172,-0.002445364564315893,0,0.0003665645439668078,-0.003400376924338417,-1.141907378821958e-06,0.006568498854351883,0.0006581929826678372,-0.0005502523415197902,0.00579179204268979,0.006348707171855972,7967.929705662135,452.5996105540225,0.7520153701277594,4.211592829265125,0.001461149548206051,0.0001367863805269901,0.8802824558924612,0.001324363167679062,50.70542641656378,0.6826775813408293,0.5131585731076505,116.3828090044126,97.64469627257866,5.244397974811099e-05,113.6246589165999,13312.60086575102,66.02007474397942,15745.06353439358,3879.735235353455,0.002648988695504766,-0.00244724050922883,-0.00263645588222185,-0.001438073133818628,0.005654239425742305,0,0,-0.000119694862927093,-0.3588916052856576,-0.1059287487094797] EM 0 13:35:07.262 dimension reduction test (EURUSD,H1) [0.002331226815118805,-70.84984591299812,-35.49971367926001,60.69058251292376,1.049456584665883,-42.35184208285295,60.90812761343581,0.008675881760275542,0.008620685402656748,0.008731078117894331,-0.000667294720674837,0.005845080481159768,0.005833401998679988,0.002539790385479495,0.001675796458760079,0.00792229604709134,0.01072137357191657,0.01189054942647922,0,0.003518070782066417,0.00809138574827074,0.0002045106345618818,-0.005848319055742076,0.005549764528898804,0.00103946798619902,-0.008604821519805591,-0.007960056731330659,-10509.62154107038,-607.7276555152829,-1.225906326607001,-5.179537786920108,-0.003656220590983723,-0.001714862736227047,-1.657652278786164,-0.001941357854756676,-80.61630801951124,-1.158614351229071,-1.010395372975761,-137.5151461158883,-129.0146405010356,…] DK 0 13:35:07.264 dimension reduction test (EURUSD,H1) CTruncatedSVD::_select_n_components Explained variance ratio [0.9718079496976207,0.971876424055512,0.9718966593387935,0.971898669685807,0.9718986697080317,0.9718986697081728,0.9718986697082533,0.9718986697082695,0.9718986697082731,0.9718986697082754,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757,0.9718986697082757] JJ 0 13:35:07.282 dimension reduction test (EURUSD,H1) CTruncatedSVD::fit_transform Best value of K = 11 FE 0 13:35:07.282 dimension reduction test (EURUSD,H1) components GP 0 13:35:07.282 dimension reduction test (EURUSD,H1) [[1.187125882554785e-07,1.707109381366902e-07,-2.162493440707256e-08,-3.212808990986057e-07,1.871672229653978e-07,-1.333159242305641e-05,-1.709658791626167e-05,5.106786021196193e-05,2.160157948893384e-05,-1.302989528292599e-06,4.973487699412528e-06,2.354866764130305e-06,0.0001127065022780296,-0.0001141032171988836,-7.674973628685988e-05,4.318893830956814e-06,-8.017085790662858e-05,1.258581118770149e-05,0.001793756756130711,0.0002550931459979332,0.0005154637372606566,0.001801147973070216,0.0001081777898713252,0.1803191282351903,-0.0971245889819613,0.1677985300894154,0.1116153850447159,0.6136670152098842,0.022810600805461,-0.4096528016535661,-0.04163009420605639,-6.077467743293966e-06,-0.01526638316446551,-0.5288520838909793,-0.03965140358106178,-0.1758179670991415,-0.003645717072725773,-0.0587633049540756,0.004124498383003558,-0.1172419838852104,0.06762215235985558,-0.04328191674666172,0.002573659612267772,0.003811049362514162,-0.0659455961610354,-0.02792883463906511,0.008647163802477509,-0.05514899696636823,0.008017364204121686,2.516946811168054e-06,-0.1623798112317545,6.339565837779877e-07,-9.103773865679859e-08,0,0,0] CH 0 13:35:07.282 dimension reduction test (EURUSD,H1) [0.000187434605818864,0.002812180913638008,0.000925532096115269,0.003073325320378009,0.009404433538995808,-0.1105512584754667,-0.2590049789665196,0.4726584971639716,0.1447383637844528,-0.05374370025421956,-0.752572111353205,0.04852191253671465,-0.1154729372340165,-0.2700032006603445,0.1267147455792905,-0.04806661586591762,-0.0004106947202907203,-0.001517506503982104,-0.003502569576390078,-0.002616630851275089,-0.0003258690084512006,-1.313122566421376e-05,-0.0009386837340425192,7.909925585103072e-05,-7.798476572374581e-05,-8.126463184191059e-05,5.556082790448295e-05,-2.687039190421141e-05,-6.540787996573879e-06,1.330764390715927e-05,-4.491635420079414e-05,-8.144156726118825e-06,-8.508538790002811e-07,5.307068574641107e-05,8.482440778162809e-06,-2.9724306932086e-05,2.843845070244019e-05,1.220433778827776e-05,4.206331251218703e-06,1.256512854012554e-05,7.365925693883173e-06,-1.116338606511276e-05,-2.071419560390051e-06,-3.218285979262829e-06,-1.138651025910271e-05,-7.728111919788928e-06,-4.653652137908648e-06,-9.580813709785919e-06,-1.028740118967147e-05,-6.979591632948435e-06,8.116615752437345e-06,1.763108270729631e-06,-4.348070304093866e-07,0,0,0] JR 0 13:35:07.282 dimension reduction test (EURUSD,H1) [1.848792316776081e-05,0.0008588118715707877,0.001008311173244842,0.002376194713912998,0.03118554398340165,0.07889519945845663,-0.07568381470451135,0.0286506682781276,-0.09873220604411656,-0.09161678196011247,-0.06574722506621368,-0.8477734032486133,-0.2533539865405071,0.01738574140899809,-0.2520128661222155,0.338533576002899,0.03018091859501061,0.03802772499047165,-0.001646103636389454,-0.00230341248842314,0.007310099460075021,-0.006012419384786831,-0.001413152018214914,2.142238614111051e-05,2.944210407515316e-05,-6.521097350129076e-05,4.95794487446122e-05,-8.706533732190571e-06,3.322659358695792e-05,-8.146689287415223e-07,7.338661273889888e-06,6.605547217087068e-06,9.447199984574336e-06,-5.17902002055696e-05,2.513872334761899e-06,-2.256988836110105e-05,-1.911456753589991e-05,-3.264899090321399e-05,-5.800966034108816e-06,1.84157480007614e-05,5.356185659483905e-06,-1.722849771456492e-05,1.407694486288703e-05,-7.853816348797691e-06,-1.555432680785718e-05,1.323568644672602e-05,-6.760913172750632e-06,-1.302135272406512e-05,-3.211793238456227e-06,5.802687671843603e-07,-4.280158053673846e-06,1.549960937140237e-06,-4.919157307518426e-07,0,0,0] ND 0 13:35:07.282 dimension reduction test (EURUSD,H1) [4.113935038265459e-05,-0.00163116425762962,-0.0006793200544509552,-0.002550542034446345,-0.0360619764220519,-0.05083503039040507,0.1457232134777539,-0.1319534223026893,-0.1000465688426969,0.03066773678926198,0.211126338548004,0.02610057183969087,-0.4621259104920466,-0.5881871797892803,0.5329599008633419,0.2326293789423069,-0.004192622153062945,-0.05839467173045784,0.002320319216461524,0.007699098543144081,-0.007658991162669676,-0.003166005488782055,-0.002283364895801648,0.0001978857108759482,9.652410400630472e-05,5.391765247424044e-05,-2.114027852314159e-05,-3.571496353187668e-06,6.919610375993553e-06,-2.388732546126286e-05,-1.795211964869842e-05,-4.375012411627235e-05,-6.279526099805299e-05,2.71361750709131e-06,-2.519904126359203e-05,-3.154274545518064e-05,-4.95034356619025e-05,4.982607182957078e-05,2.91223664932767e-05,7.266298957499022e-06,-5.27732883601878e-0…] QD 0 13:35:07.283 dimension reduction test (EURUSD,H1) TRUNC_SVD Reduced matrix[100x11] FJ 0 13:35:07.283 dimension reduction test (EURUSD,H1) [[3032.510155721446,0.6797958296629614,0.3147476036369294,-1.879105115460979,2.342311343896795,-1.444862488231156,1.72748820545895,9003.45453268309,6583.0037062413,11248.15180107277,7664.89601210886] QF 0 13:35:07.283 dimension reduction test (EURUSD,H1) [2613.746957390415,0.8994353272147151,0.2278876639409569,-1.833173521667439,2.422820504229084,-1.194855144516288,1.619766862896731,8730.428168136412,6321.389560496657,10843.26327739175,7319.502533761807] PE 0 13:35:07.283 dimension reduction test (EURUSD,H1) [2290.391536977857,0.8379176898463352,0.123448650655239,-1.79572777997295,2.553555290053082,-1.261720012039457,1.872612496522998,9359.431555011421,6628.023623123124,11573.90347441899,7725.564567458286] MG 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1793.638587775052,0.8840827856664026,-0.009259140368535656,-1.812929578463889,2.752934946133839,-1.194132624145421,2.137669035967074,10045.24774931484,6958.660329797975,12319.85906895874,8090.242616080116] IG 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1067.248927502046,0.9361386848947133,0.2824462001532311,-2.094258230827017,2.302295904768048,-0.9859566963069195,1.849760818059724,8852.426567434784,5936.081092995532,10850.91447636461,7048.244994007338] NK 0 13:35:07.283 dimension reduction test (EURUSD,H1) [875.831228770905,1.10630868463423,0.3875078994082357,-2.07189694520072,2.003365098290179,-0.8110375102176066,1.363090061871958,7086.981018896034,4689.12320342304,8755.082428498208,5718.774787652458] GK 0 13:35:07.283 dimension reduction test (EURUSD,H1) [750.5105412678478,1.58876151742295,0.4277968820488219,-2.495434492237099,2.546292376170158,-0.5828893757361142,1.468026541982692,8457.543559890122,5579.75159746014,10352.91442474459,6691.476688344664] EK 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1028.864261893481,1.737564309663063,0.6859148896559381,-2.576387294650619,2.22158096752311,-0.3483142589026745,0.9424367352835165,7447.770506698205,5028.271311988544,9145.898159310427,5970.749558054185] MJ 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1315.206321750198,1.599230058650526,1.006274380327883,-2.7208483981554,1.702262719567507,-0.3336344655640055,0.5851633683692923,6123.681144041253,4208.879528858515,7625.280231352584,5091.190116446857] PI 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1040.359603039049,2.015870643904685,1.297584348509677,-3.422661750068991,2.051984203691556,-0.1752179554187868,0.625382499042994,7446.846626605789,4973.286352001192,9200.911151239434,6040.469516939555] MJ 0 13:35:07.283 dimension reduction test (EURUSD,H1) [2056.827104147074,0.6969653180001977,0.5026500071613408,-1.539526411095017,1.333168361525386,-1.205142789226661,0.6457357287148752,4362.936467349854,3118.514061447938,5739.541487386377,4094.4444510553] KI 0 13:35:07.283 dimension reduction test (EURUSD,H1) [2595.720157415741,0.5163475309230526,0.7707831677360033,-1.609464385287863,0.6391376890497206,-1.091660522613616,0.2434028653397404,2245.471581325966,1932.755290423922,3219.551710692477,2600.234934440349] FJ 0 13:35:07.283 dimension reduction test (EURUSD,H1) [2000.813854424802,-0.1645196557230545,0.0271698872028618,-1.136148599089293,1.199419424319289,-1.596267278271581,1.616290624329739,4340.908808342276,3155.426978423527,5643.263654816839,4006.305187235153] GN 0 13:35:07.283 dimension reduction test (EURUSD,H1) [714.201770611258,0.3322650152566928,-0.128924730742915,-1.497052055771412,1.889908667964611,-1.18328154703613,2.040965402442796,6411.664479403819,4214.549479233159,7917.864243044486,5153.2871400763] PN 0 13:35:07.283 dimension reduction test (EURUSD,H1) [676.7845833423586,0.1119963611895549,-0.4614956061196153,-0.7783442013329294,1.680735950870798,-1.110059082233565,1.926793017792492,5379.745050208609,3591.380424598063,6620.153862582291,4307.434978894435] GL 0 13:35:07.283 dimension reduction test (EURUSD,H1) [766.9657214036708,0.3283061830008722,-0.3885600107901345,-1.031650548898253,1.912288786544761,-1.036499883901753,2.01321049032323,6312.725946828255,4249.957068368147,7723.98867795246,5012.0279192467] LN 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1272.697206108888,-0.3546159778199272,-0.7521309963906442,-0.1806331494361637,1.527697751794935,-1.486437217294949,2.136800392269752,5073.89079322631,3559.651506707118,6317.965379534476,4229.397904810504] RM 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1869.479624807111,-0.0175694426730242,-0.7678796689175619,-0.2643173159395689,1.862033543014759,-1.44967470564508,2.028361828380722,5639.625182760593,4124.447639836587,7033.466549718048,4777.911629224665] GN 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1936.02506453734,0.0845940044872068,-0.8282752540396139,-0.2824304083282199,1.982789807497455,-1.350085518779075,2.085883725566998,5911.195073473721,4372.189044548059,7316.534104301676,4945.624347822407] CR 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1844.238763352675,-0.4606751585910102,-1.187448989349241,0.2320045292554417,1.900279565663612,-1.62110507361112,2.534343850099422,5907.730651516376,4364.59879103891,7282.962351393813,4893.24121551531] ER 0 13:35:07.283 dimension reduction test (EURUSD,H1) [1716.303347926322,-0.2450617860724134,-0.9482067759826802,-0.03979477150523128,1.79416546386642,-1.453641927846228,2.284520496569503,5710.722665215339,4183.828568899002,7048.670774203967,4734.907606214866…] GP 0 13:35:07.283 dimension reduction test (EURUSD,H1) Train acc = 0.8087284075835584 ER 0 13:35:07.283 dimension reduction test (EURUSD,H1) Test acc = 0.7286157353628964
A precisão foi de 80% na fase de treinamento e 72% na fase de teste.
Fatoração de matriz não negativa (NMF)
O método NMF não conseguiu mostrar resultados valiosos, pois tudo o que produziu foram valores nan, e, no momento, ele não é mais um concorrente.
LK 0 13:43:09.997 dimension reduction test (EURUSD,H1) CNMF::fit_transform [1/100] Loss = nan frobenius norm nan II 0 13:43:09.997 dimension reduction test (EURUSD,H1) CNMF::fit_transform [2/100] Loss = nan frobenius norm nan FG 0 13:43:09.997 dimension reduction test (EURUSD,H1) CNMF::fit_transform [3/100] Loss = nan frobenius norm nan KF 0 13:43:09.997 dimension reduction test (EURUSD,H1) CNMF::fit_transform [4/100] Loss = nan frobenius norm nan PD 0 13:43:09.997 dimension reduction test (EURUSD,H1) CNMF::fit_transform [5/100] Loss = nan frobenius norm nan PR 0 13:43:09.998 dimension reduction test (EURUSD,H1) CNMF::fit_transform [6/100] Loss = nan frobenius norm nan KP 0 13:43:09.998 dimension reduction test (EURUSD,H1) CNMF::fit_transform [7/100] Loss = nan frobenius norm nan NO 0 13:43:09.998 dimension reduction test (EURUSD,H1) CNMF::fit_transform [8/100] Loss = nan frobenius norm nan QM 0 13:43:09.998 dimension reduction test (EURUSD,H1) CNMF::fit_transform [9/100] Loss = nan frobenius norm nan MH 0 13:43:09.998 dimension reduction test (EURUSD,H1) CNMF::fit_transform [10/100] Loss = nan frobenius norm nan .... .... LM 0 13:43:10.006 dimension reduction test (EURUSD,H1) CNMF::fit_transform [97/100] Loss = nan frobenius norm nan OO 0 13:43:10.006 dimension reduction test (EURUSD,H1) CNMF::fit_transform [98/100] Loss = nan frobenius norm nan NI 0 13:43:10.006 dimension reduction test (EURUSD,H1) CNMF::fit_transform [99/100] Loss = nan frobenius norm nan CI 0 13:43:10.006 dimension reduction test (EURUSD,H1) CNMF::fit_transform [100/100] Loss = nan frobenius norm nan MI 0 13:43:10.008 dimension reduction test (EURUSD,H1) NMF Reduced matrix[100x56] FN 0 13:43:10.008 dimension reduction test (EURUSD,H1) [[nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan] EF 0 13:43:10.008 dimension reduction test (EURUSD,H1) [nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan] GK 0 13:43:10.008 dimension reduction test (EURUSD,H1) [nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan] QO 0 13:43:10.008 dimension reduction test (EURUSD,H1) [nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan] CL 0 13:43:10.008 dimension reduction test (EURUSD,H1) ... .... EO 0 13:43:10.008 dimension reduction test (EURUSD,H1) [nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan…] EL 0 13:43:10.010 dimension reduction test (EURUSD,H1) Train acc = nan GJ 0 13:43:10.010 dimension reduction test (EURUSD,H1) Test acc = nan
Vamos tentar construir um modelo de regressão linear sem usar o método TruncatedSVD, aplicando todos os dados e vendo seu desempenho.
GM 0 13:53:03.686 dimension reduction test (EURUSD,H1) None Reduced matrix[100x56] MG 0 13:53:03.686 dimension reduction test (EURUSD,H1) [[1.099900334222465,28.09636760954466,23.62682944559725,20.05254468697356,24.9034642580335,25.12500390358301,19.04617822178984,1.098553499999958,1.102834674021181,1.094272325978734,1.100734208567449,1.100855469999989,1.098655958571417,1.100133799959087,1.09983,1.097395,1.0950725,1.094895,1.10265,1.100030000000004,1.09944087984,0.03659425270713104,1.100626095746222,1.098825209694279,0.001265714285714323,1.705459946510501e-05,0.0009170545994650059,1655.083284093067,24.54629344924639,0.4388379204892836,0.1040346153847089,0.001226921314023466,0.0012463900886654,100.1775875415509,-1.946877464193406e-05,63.53135141907871,0.1040413928121892,0.1171616554839711,43.66576819407196,56.26437671196908,0.000170982627085528,-39.78494623655773,-2966278.270646845,59.66122501825306,-426422,2459,-0.0002127529411762598,1.096805768175659,1.098423909197834,1.099767192241293,0.00330055882353042,1.797693134862316e+308,1.797693134862316e+308,0.001618141022174502,0,0.03660024400162265] DH 0 13:53:03.687 dimension reduction test (EURUSD,H1) [1.099895090784212,25.44125240854614,20.47658551951762,17.37887206204375,24.10764337690182,24.31185250851098,18.42976333679036,1.098807999999958,1.102730359493936,1.09488564050598,1.100648597660533,1.100904089999989,1.09870448142856,1.100085345856641,1.09983,1.097395,1.0949775,1.09511,1.10237,1.100145000000004,1.09954,0.03659633771631932,1.100539015261062,1.098860393123325,0.001167857142857174,0.000137475370969975,0.0006774753709699599,1151.094538712408,-2.654176423441059,0.4388379204892836,0.1582615384614039,0.001148578761165142,0.001262448000841409,100.0618688017469,-0.0001138692396762668,61.34588689321424,0.1137518684603838,0.1082289779011129,39.39899833055219,47.44710420521373,0.000170240277350424,-32.25806451612595,-2966207.715091289,53.52331983100873,-424517,1905,-0.0003920588235292355,1.097045324469839,1.098718420548105,1.099909753793035,0.003008823529412785,1.797693134862316e+308,1.797693134862316e+308,0.001673096078265379,0,0.0283464566929126] LG 0 13:53:03.687 dimension reduction test (EURUSD,H1) [1.099896454740888,23.0468607955726,17.74637411691527,20.61724467599245,23.13044479515374,23.58127757886977,19.12803587728702,1.099111999999958,1.102374285088665,1.095849714911251,1.100636052620929,1.100962719999989,1.098762994285703,1.100079584777576,1.09983,1.097395,1.0949025,1.09511,1.10224,1.100252000000004,1.10126,0.03659849012444888,1.10032475011848,1.098869304036258,0.001062857142857168,-6.787825345444531e-05,0.0004021217465455251,385.6853260090575,21.57900929644156,0.4735973597359621,0.1358284615387142,0.001095648513071756,0.001261794377734486,100.0745976729165,-0.00016614586466273,63.02688593246703,0.1054308010829696,0.1073759442661703,21.12676056338241,34.73050902933566,0.000167907541851923,-45.79710144927351,-2967636.417218948,63.24364017027852,-427004,2487,-0.0004969529411762387,1.097296453356775,1.098949867979591,1.099885803034428,0.002709058823530563,1.797693134862316e+308,1.797693134862316e+308,0.001653414622816651,1,0.0188982710092469] OH 0 13:53:03.687 dimension reduction test (EURUSD,H1) [1.09988711983821,22.27698129412946,15.38019090132657,21.80270494870316,22.00511532835773,22.64977536234809,19.53807060936342,1.099376999999958,1.101815803805105,1.096938196194811,1.100524122300143,1.101012769999989,1.098812944285703,1.100014455800224,1.099825,1.097395,1.09474,1.09511,1.10151,1.100228000000004,1.1012264,0.03660061924403133,1.100053014395182,1.098898955035223,0.0009950000000000245,-0.0002124670743897106,0.0003975329256102889,-665.9989270069636,-29.795012402167,0.4599358974358811,0.1292584615385153,0.001012177253020718,0.001241318811166551,100.0636954266684,-0.000229141558145832,59.22581938383797,0.05654610290371272,0.09982547246710144,18.13186813187058,26.21920900860187,0.0001634553208976355,-53.91304347826081,-2969847.417218948,53.21227207754287,-429215,2211,-0.000519241176470371,1.097569033867792,1.099141134482142,1.099908642427543,0.002445970588236479,1.797693134862316e+308,1.797693134862316e+308,0.001572100614350314,1,0.02758932609678876] HJ 0 13:53:03.687 dimension reduction test (EURUSD,H1) [1.099803229128606,19.89136498265082,20.62876885414336,18.89567762220941,21.68993269258447,25.44873831711815,17.83416777391867,1.099577499999958,1.101202281523733,1.097952718476183,…] EK 0 13:53:03.689 dimension reduction test (EURUSD,H1) Train acc = -nan MR 0 13:53:03.689 dimension reduction test (EURUSD,H1) Test acc = -nan
O modelo de regressão linear não conseguiu por si só gerar resultados para esse enorme conjunto de dados. Há algumas medidas que podem ser tomadas para resolver os problemas, como a normalização dos dados de entrada, a eliminação da instabilidade numérica e muito mais, que discutiremos em artigos futuros. Você sempre pode acompanhar as atualizações e mudanças futuras nas bibliotecas discutidas neste artigo no repositório GitHub:
Vamos analisar as vantagens e desvantagens de cada método de redução de dimensionalidade:
Vantagens do método TruncatedSVD
Preservação da variância:
O método SVD busca preservar o máximo de variação possível dos dados originais. Ele fornece uma maneira de representar os dados em um espaço de menor dimensão, mantendo as informações mais importantes.
Ortogonalidade dos componentes:
Os componentes (vetores singulares) obtidos pelo SVD são ortogonais, o que pode ser útil em certas aplicações. A ortogonalidade simplifica a interpretação dos componentes.
Estabilidade numérica:
Uma das vantagens do método SVD é sua estabilidade numérica. Ele lida bem com dados esparsos e ruidosos. A decomposição é baseada na decomposição de valores próprios da matriz de covariância.
Aplicações para compressão de imagens e redução de ruído:
O SVD é frequentemente usado para compressão de imagens e redução de ruído. Os valores singulares determinam a importância das medidas, e seu truncamento permite compressão, minimizando a perda de informações.
Vantagens da fatoração de matriz não negativa (NMF)
Representação baseada em partes:
O NMF aplica restrições de não negatividade tanto à matriz básica quanto à matriz de coeficientes. Isso resulta em uma representação baseada em partes, o que pode ser útil, por exemplo, na modelagem de tópicos ou na análise de imagens.
Interpretabilidade:
A restrição de não negatividade muitas vezes leva a fatores mais interpretáveis. Por exemplo, nos tópicos extraídos de dados textuais, cada tópico é representado como uma combinação linear não negativa de palavras, tornando os tópicos mais interpretáveis.
Aplicação na análise de documentos e processamento de imagens:
O método NMF é frequentemente usado na análise de documentos (modelagem de tópicos) e no processamento de imagens. Ele pode revelar padrões subjacentes nos dados e é especialmente útil quando os dados contêm naturalmente componentes não negativos.
Representações esparsas:
O NMF cria representações esparsas, onde apenas um subconjeto de componentes é usado para representar cada ponto de dados. Isso pode ser útil ao lidar com dados multidimensionais.
Vantagens gerais
Redução de dimensionalidade:
Tanto o SVD quanto o NMF fornecem métodos eficazes para reduzir a dimensionalidade dos dados, o que pode ser crucial para lidar com conjuntos de dados multidimensionais e extrair recursos significativos.
Extração de características:
Ambos os métodos são úteis para a extração de características, que pode melhorar o desempenho dos modelos de aprendizado de máquina e ajudar na interpretação dos dados.
Redução de ruído:
Ambos os métodos podem ajudar a reduzir o ruído nos dados, coletando informações importantes e filtrando o ruído.
Desvantagens do método TruncatedSVD
Sensibilidade a valores atípicos:
O método SVD pode ser sensível a valores atípicos nos dados, pois busca minimizar a soma dos erros quadráticos médios. Valores atípicos podem ter um impacto significativo na decomposição.
Complexidade computacional:
Calcular o método SVD completo pode ser computacionalmente caro, especialmente para grandes conjuntos de dados. O método TruncatedSVD usa uma aproximação, mas ainda pode exigir dados multidimensionais.
Aplicabilidade limitada a dados esparsos:
A eficiência do SVD é menor ao trabalhar com dados muito esparsos, pois a presença de muitos valores zero pode afetar a precisão da decomposição.
Complexidade de interpretação:
Embora os componentes obtidos pelo SVD sejam ortogonais, a interpretação desses componentes pode ser complexa, especialmente em comparação com o NMF, que impõe restrições de não negatividade.
Desvantagens do método de fatoração de matriz não negativa (NMF)
Não unicidade das soluções:
As soluções NMF não são únicas, o que significa que diferentes inicializações podem levar a diferentes fatorações. A falta de unicidade pode dificultar a comparação de resultados de diferentes execuções.
Dificuldade com entradas nulas:
O NMF enfrenta dificuldades ao lidar com entradas nulas na matriz de dados. Trabalhar com dados ausentes ou valores nulos requer atenção especial, como a remoção de valores Nan e Infinity.
void CDimensionReductionHelpers::ReplaceNaN(matrix &mat) { for (ulong i = 0; i < mat.Rows(); i++) for (ulong j = 0; j < mat.Cols(); j++) if (!MathIsValidNumber(mat[i][j])) mat[i][j] = 0.0; }
Escolha do rank (número de componentes):
Determinar o rank adequado (número de componentes) para o NMF pode ser uma tarefa desafiadora. A escolha incorreta pode levar ao sobreajuste ou subajuste dos dados.
Aplicabilidade limitada a valores negativos:
O NMF impõe a restrição de não negatividade, o que significa que o método não é adequado para conjuntos de dados em que valores negativos fazem sentido. Essa limitação restringe os tipos de dados que podem ser modelados efetivamente.
Considerações gerais
Interpretabilidade e precisão da reconstrução:
O método NMF pode fornecer componentes mais interpretáveis, mas isso frequentemente é alcançado à custa da precisão da reconstrução em comparação com o SVD. A escolha entre interpretabilidade e precisão depende dos objetivos específicos da análise.
Compromissos na redução de dimensionalidade
Ambos os métodos envolvem um compromisso entre a redução de dimensionalidade e a perda de informação. O desafio é encontrar o equilíbrio ideal que preserve as principais características e minimize a perda de informação.
Hiperparâmetros algorítmicos:
Para obter resultados ótimos, tanto o SVD quanto o NMF podem exigir ajustes de hiperparâmetros, como o número de componentes ou a força da regularização. A sensibilidade a esses hiperparâmetros deve ser considerada.
Perguntas frequentes sobre redução de dimensionalidade
Pergunta. Como funcionam os métodos de redução de dimensionalidade?
Resposta. Eles transformam os dados em um novo conjunto de componentes de variáveis não correlacionadas, que refletem a máxima variação dos dados originais. Eles determinam as direções ao longo das quais os dados variam mais.
Pergunta. Quando se deve usar a redução de dimensionalidade?
Resposta. A redução de dimensionalidade é útil ao trabalhar com dados multidimensionais, como em aprendizado de máquina, processamento de imagens e bioinformática. É muito valiosa quando há funções redundantes ou desnecessárias, e a eficiência computacional, interpretabilidade ou visualização são prioridades.
Pergunta. A redução de dimensionalidade pode ser usada com qualquer tipo de dados?
Resposta. A redução de dimensionalidade pode ser aplicada a diversos tipos de dados, incluindo dados numéricos, categóricos e textuais. No entanto, a escolha do método pode variar dependendo da natureza dos dados.
Pergunta. Existem alternativas aos métodos de redução linear de dimensionalidade?
Resposta. Sim, existem métodos não lineares, como Kernel PCA, t-SNE e autocodificadores, que capturam relações complexas nos dados além das transformações lineares.
Pergunta. A redução de dimensionalidade é sempre benéfica no aprendizado de máquina?
Resposta. Nem sempre. Embora a redução de dimensionalidade possa oferecer vantagens em termos de eficiência computacional, interpretabilidade e visualização, ela nem sempre melhora o desempenho do modelo. Tudo depende das características específicas do conjunto de dados e da tarefa de aprendizado de máquina.
Pergunta. A redução de dimensionalidade pode levar à perda de informação?
Resposta. Sim, a redução de dimensionalidade pode levar à perda de informação, especialmente se a representação reduzida descartar características relevantes. O objetivo é encontrar um equilíbrio entre a redução de dimensionalidade e a preservação de informações importantes.
Pergunta. Quais problemas podem surgir ao usar métodos de redução de dimensionalidade?
Resposta. Os problemas incluem a possibilidade de sobreajuste, sensibilidade a valores atípicos, não unicidade das soluções (especialmente no NMF) e a necessidade de ajuste cuidadoso dos hiperparâmetros.
Conteúdo do anexo:
Arquivo | Descrição/propósito |
---|---|
helpers.mqh | Contém código que auxilia na execução de operações de redução de dimensionalidade para NMF.mqh e TruncatedSVD.mqh. |
Linear Regression.mqh | Contém código do modelo de regressão linear. |
matrix_utils.mqh | Operações adicionais de matriz |
metrics.mqh | Biblioteca contendo código para medir o desempenho de modelos de aprendizado de máquina. |
NMF | Contém a classe de Fatoração de Matriz Não Negativa (NMF) |
plots.mqh | Biblioteca para construção de gráficos no símbolo atual |
preprocessing.mqh | Classe contendo funções para pré-processamento de dados e preparação para aprendizado de máquina |
TruncatedSVD.mqh | Classe Truncated SVD |
dimension reduction test.mq5 | Script para testar todo o código discutido no artigo |
Peace out.
Traduzido do Inglês pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/en/articles/13968
- Aplicativos de negociação gratuitos
- 8 000+ sinais para cópia
- Notícias econômicas para análise dos mercados financeiros
Você concorda com a política do site e com os termos de uso