MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
GIT:それは何か?

GIT:それは何か?

今回は、開発者にとって非常に重要なツールを紹介しましょう。GITに馴染みのない方は、この記事を読んでGITとは何か、MQL5でどのように使用するかをご覧ください。
preview
データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント

この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
preview
MQL5における動的時間伸縮を用いたパターン認識

MQL5における動的時間伸縮を用いたパターン認識

本稿では、金融時系列における予測パターンを特定する手段として、動的時間伸縮の概念について論じます。その仕組みと、純粋なMQL5での実装を紹介します。
preview
リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

もっと面白いものを作りましょう。ネタバレはしたくないので、理解を深めるために記事を読んでください。リプレイ/シミュレーターシステムの開発に関する本連載の最初の段階から、私は、開発中のシステムと実際の市場の両方で同じようにMetaTrader 5プラットフォームを使用することがアイディアであると述べてきました。これが適切におこなわれることが重要です。ある道具を使用して訓練して戦い方を学んだ末、戦いの最中に別の道具を使用しなければならないというようなことは誰もしたくありません。
preview
MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築

この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。
preview
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
preview
最適化アルゴリズムの効率における乱数生成器の品質の役割

最適化アルゴリズムの効率における乱数生成器の品質の役割

この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
preview
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
preview
コードロックアルゴリズム(CLA)

コードロックアルゴリズム(CLA)

この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。
preview
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第I部)

母集団最適化アルゴリズム:極値から抜け出す力(第I部)

本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。
preview
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
preview
知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

ガウス過程カーネルは正規分布の共分散関数であり、予測において役割を果たす可能性があります。MQL5のカスタムシグナルクラスで、このユニークなアルゴリズムを探求し、プライムエントリシグナルやエグジットシグナルとして活用できるかを検証しました。
preview
彗尾アルゴリズム(CTA)

彗尾アルゴリズム(CTA)

この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
preview
亀甲進化アルゴリズム(TSEA)

亀甲進化アルゴリズム(TSEA)

これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
preview
MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。
preview
知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。
preview
市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例

市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例

この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。
preview
知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。