Indicateurs de tendance - page 20

 

Ohhh, Désolé Doody ! Je viens de trouver votre indicateur (trendisgnal)

 

tout d'abord, merci d'avoir téléchargé l'ex4

mais il ressemble à ceci (essayez la couleur de fond et le modèle différent - toujours la disparition)

[Il n'y a pas d'autre indicateur, nous devons le mettre en place avant d'installer trend.ex4, n'est-ce pas ?] -- indicateur préréquentiel qui fonctionne en groupe

vous pouvez supprimer l'ex4, puis mettre MQ4 dans son dossier pour rouvrir le MT4 - cela devrait vous donner un nouveau trend.ex4, si cela fonctionne sur le graphique, s'il vous plaît télécharger une fois de plus.

d'ailleurs MQ4 était dans la réponse précédente

mais oui, c'est un indicateur de repeint, ce qui signifie qu'il appartient à la catégorie des indicateurs de REGRET -- lorsque vous suivez sa nouvelle direction et que vous entrez, vous le regretterez dans les 90 minutes.

-- mais quand je regarde votre image plus tôt, il apparaît juste comme un indicateur à 2 couleurs, alors le repeint sera-t-il vraiment si mauvais ?

Lsma trend - channeled.mq4 (4.6 KB, 321 views) is that good ?

mon LSMA normal peint beaucoup de choses et il ne fait que profiler ce qui vient de se passer (pas de capacité de prédiction du tout).

et je vais l'utiliser sur 30M (bon ?), votre exemple est M1 (trop risqué pour moi)

===========

Je suis assez bon dans la détermination du niveau de prix critique pour lespaires de devises.

trend.ex4 pourrait être quelque chose comme l'indicateur SEFC -- dans les données historiques (c'est-à-dire pas la demi-journée récente) , il semble assez bon

mais lorsque vous essayez de l'utiliser pour entrer, il vous donne un sentiment de risque et d'incertitude.

en fait, nous devrions trouver une combinaison d'indicateurs pour DANGEREUX d'entrer en ce moment - c'est-à-dire que ce n'est définitivement pas le bon moment pour entrer, par exemple en identifiant la zone de consolidation, etc. avec les conditions actuelles du marché.

---- J'aime les graphiques 30M, et j'ai remarqué une chose à propos de l'AUDCHF - la volatilité de cette paire est TRÈS FAIBLE.

pour une barre de bougie extra longue, nous pourrions dessiner une forme en L en utilisant une seule barre de bougie, c'est-à-dire deux rectangles dans MT4.

nous pourrions alors décider quand le pic a fait disparaître l'élan (le signe pourrait être inversé)

Je vais examiner d'autres paires pour voir où se trouvent les pics et si le même modèle inverse persiste.

il pourrait s'agir d'une découverte ratée car les AUD-chf sont comme des tortues, ils refusent de bouger beaucoup.

 
gorangel:
Ohhh, Désolé Doody ! Je viens de trouver votre indicateur (trendisgnal)

c'est ok gorangel...

j'avais des doutes parce que quelqu'un d'autre m'avait dit avant qu'il se repeignait... mais j'ai vérifié depuis longtemps maintenant et je ne pense pas qu'il se repeigne...

si tu as le temps, tu peux le vérifier...

Merci

 

doody

Vous avez raison. L'indicateur que vous avez posté ne se repeint pas.

Voici la même chose mais écrite différemment (code plus simple, pas de restriction dans les barres (cela fonctionne pour tout le graphique maintenant)). Je pense que ce qu'il fait sera plus clair (à partir du code) maintenant et il est plus approprié pour un travail ultérieur.

PS : j'ai gardé toute la logique comme dans l'original.

Salutations

Mladen

doody:
c'est ok gorangel...

J'avais quelques doutes parce que quelqu'un d'autre m'avait dit avant qu'il se repeignait... mais j'ai vérifié depuis longtemps maintenant et je ne pense pas qu'il se repeigne...

si tu as le temps, tu peux le vérifier...

merci
Dossiers :
 

Bandes Kirshenbaum

Bonjour à tous,

J'ai cherché l'indicateur sur Internet, mais je n'ai rien trouvé. Quelqu'un peut-il fabriquer l'indicateur ?

Description :

Les bandes de Kirshenbaum sont des lignes de canal tracées autour d'une moyenne mobile exponentielle (voir Moyenne mobile exponentielle). La largeur du canal est un multiple de "l'erreur standard" d'une régression linéaire des N derniers jours (voir Régression linéaire, et la moyenne mobile exponentielle est lissée en utilisant les mêmes N jours.

Les bandes de Kirshenbaum sont similaires aux bandes de Bollinger (voir Bandes de Bollinger), mais avec une erreur standard de régression linéaire (stderr) au lieu d'un écart standard (stddev, voir Écart standard). La différence est que stddev ne tient pas compte d'une tendance, de sorte que le canal de Bollinger s'élargit lorsqu'une tendance est en cours. Mais stderr est basé sur la déviation d'une ligne inclinée ajustée, donc si les prix progressent régulièrement à la hausse ou à la baisse, la largeur du canal reste faible.

Les valeurs d'erreur standard (c'est-à-dire la largeur du canal) peuvent également être visualisées directement comme un indicateur sous le nom de "Linear Regression Stderr" (voir Linear Regression).

ou :

KBA-C Bandes de Kirshenbaum Paul Kirshenbaum, un gestionnaire de fonds et mathématicien titulaire d'un doctorat en économie de NYU, a soumis cette bande de trading plutôt unique qui est "dé-tendue". Les bandes de Kirshenbaum sont similaires aux bandes de Bollinger (voir BOL-C) dans la mesure où elles mesurent la volatilité du marché. Cependant, plutôt que d'utiliser l'écart type d'une moyenne mobile pour la largeur de la bande, elles utilisent l'erreur type des lignes de régression linéaire de la clôture. Cela a pour effet de mesurer la volatilité autour de la tendance actuelle, au lieu de mesurer la volatilité pour les changements de tendance. Construction : Les bandes de Kirshenbaum sont construites comme suit :

Calculez une moyenne mobile exponentielle de période P des données basées sur la clôture.

Ensuite, pour chaque barre, calculez la ligne de régression linéaire de la période L, en utilisant la clôture du jour comme point final de la ligne. (Remarque : le terme " régression linéaire " est identique à la ligne des " moindres carrés " ou de " meilleur ajustement " dans certains manuels).

Calculez d1, d2, d3, ... dL comme la distance entre la ligne et la clôture de chaque barre qui a été utilisée pour dériver la ligne. C'est-à-dire, di = Distance entre la ligne de régression et la clôture de chaque barre.

Calculez la moyenne des erreurs au carré :

AE = (d12 + d22 + d32 + .. + dN2) / L

L'erreur standard (Se) est la racine carrée de cette valeur :

Se = racine carrée de AE

Ensuite, si N = Nombre d'erreurs standard, la largeur de bande est :

BW = N * SE

Ajoutez et soustrayez la largeur de bande de la moyenne mobile exponentielle pour obtenir la valeur du jour pour les bandes supérieure et inférieure.

Paramètres : Périodes (P) : La période utilisée dans le calcul de la moyenne mobile exponentielle. Périodes de régression linéaire (L) : La période utilisée pour construire les lignes de la régression linéaire. Déviations (N) : Nombre de déviations utilisées. C'est-à-dire que la valeur de l'erreur standard peut être multipliée par un facteur pour élargir les bandes. M. Kirshenbaum recommande une valeur de 1,75.

Les bandes de Kirshenbaum donnent d'excellentes bandes de volatilité. Comparez ces systèmes avec les bandes de Bollinger. Utilisez les bandes de Kirshenbaum pour mesurer la volatilité autour d'une tendance, et les bandes de Bollinger pour mesurer les changements de tendance.

J'ai trouvé le code suivant : Bande de Kirshenbaum inférieure (KBL)

' Utilisation pour les valeurs de l'indicateur sous-jacent, indexées par l'indice de la barre.

Define values() As Number = IndicatorValues(_indicatorKey, barIndex, length + 2 * MathMax(_periods1, _periods2))

' Utilisation pour la somme de X fois Y, la somme de X, la somme de Y, la somme de X^2

Définir sumXY,sumX,sumY,sumXPower As Number

' Utilisez pour le facteur de lissage EMA.

Define smoothFactor As Number = 2 / (_periods1 + 1)

' Utiliser pour le calcul de l'EMA.

Définir EMA As Number

' Utiliser pour le calcul de la régression linéaire.

Define LR As Number

' Utiliser pour la moyenne des erreurs au carré.

Define averageError As Number

' Utiliser pour les valeurs de script d'indicateur calculées, indexées par l'indice de barre.

Define results(length - 1) As Number

' Calculez les valeurs de script de l'indicateur pour la plage de barres spécifiée.

For i As Integer = length - 1 To 0 Step -1

EMA = 0

' Calculez la valeur de script de l'indicateur pour la barre actuelle.

For j As Integer = i + _periods1 - 1 To i Step -1

If (EMA 0) Then

EMA = (1 - smoothFactor) * EMA + smoothFactor * values(j)

Sinon,

EMA = valeurs(j)

End If

Suivant

ErreurMoyenne = 0

' Calculer la régression linéaire et la moyenne des erreurs quadratiques.

For j As Integer = i + _periods2 - 1 To i Step -1

LR = sumXY = sumX = sumY = sumXPower = 0

For k As Integer = j + _periods2 - 1 To j Step -1

sumXY += k * valeurs(k)

sumX += k

sumY += valeurs(k)

sumXPower += k * k

Suivant

LR = (sumY - (1 * ((_periods2 * sumXY) - (sumX*sumY)) / (_periods2 * sumXPower - (sumX * sumX))) * sumX) / _periods2

averageError += MathPow(valeurs(j) - LR, 2)

Suivant

averageError = MathSqrt(averageError / _periods2)

résultats(i) = EMA - averageError

Suivant

Retourner les résultats

Merci et salutations

derumuro

Dossiers :
 

Bandes de Kirshenbaum ...

Ce devrait être celui-là

PS : si vous voulez le comparer aux bandes de Bollinger, mettez le paramètre "Mode" à 0 (moyenne mobile simple) car les bandes de Bollinger utilisent une moyenne mobile simple pour la ligne médiane (pas d'EMA comme les bandes de Kirshenbaum).

Salutations

derumuro:
Bonjour à tous,

J'ai cherché l'indicateur sur Internet, mais je n'ai rien trouvé. Quelqu'un peut-il créer cet indicateur ?

Description :

Les bandes de Kirshenbaum sont des lignes de canal tracées autour d'une moyenne mobile exponentielle (voir Moyenne mobile exponentielle). La largeur du canal est un multiple de "l'erreur standard" d'une régression linéaire des N derniers jours (voir Régression linéaire, et la moyenne mobile exponentielle est lissée en utilisant les mêmes N jours.

Les bandes de Kirshenbaum sont similaires aux bandes de Bollinger (voir Bandes de Bollinger), mais avec une erreur standard de régression linéaire (stderr) au lieu d'un écart standard (stddev, voir Écart standard). La différence est que stddev ne tient pas compte d'une tendance, de sorte que le canal de Bollinger s'élargit lorsqu'une tendance est en cours. Mais stderr est basé sur la déviation d'une ligne inclinée ajustée, donc si les prix progressent régulièrement à la hausse ou à la baisse, la largeur du canal reste faible.

Les valeurs d'erreur standard (c'est-à-dire la largeur du canal) peuvent également être visualisées directement comme un indicateur sous le nom de "Linear Regression Stderr" (voir Linear Regression).

ou :

KBA-C Bandes de Kirshenbaum Paul Kirshenbaum, un gestionnaire de fonds et mathématicien titulaire d'un doctorat en économie de NYU, a soumis cette bande de trading plutôt unique qui est "dé-tendue". Les bandes de Kirshenbaum sont similaires aux bandes de Bollinger (voir BOL-C) dans la mesure où elles mesurent la volatilité du marché. Cependant, plutôt que d'utiliser l'écart type d'une moyenne mobile pour la largeur de la bande, elles utilisent l'erreur type des lignes de régression linéaire de la clôture. Cela a pour effet de mesurer la volatilité autour de la tendance actuelle, au lieu de mesurer la volatilité pour les changements de tendance. Construction : Les bandes de Kirshenbaum sont construites comme suit :

Calculez une moyenne mobile exponentielle de période P des données basées sur la clôture.

Ensuite, pour chaque barre, calculez la ligne de régression linéaire de la période L, en utilisant la clôture du jour comme point final de la ligne. (Remarque : le terme " régression linéaire " est identique à la ligne des " moindres carrés " ou de " meilleur ajustement " dans certains manuels).

Calculez d1, d2, d3, ... dL comme la distance entre la ligne et la clôture de chaque barre qui a été utilisée pour dériver la ligne. C'est-à-dire, di = Distance entre la ligne de régression et la clôture de chaque barre.

Calculez la moyenne des erreurs au carré :

AE = (d12 + d22 + d32 + .. + dN2) / L

L'erreur standard (Se) est la racine carrée de cette valeur :

Se = racine carrée de AE

Ensuite, si N = Nombre d'erreurs standard, la largeur de bande est :

BW = N * SE

Ajoutez et soustrayez la largeur de bande de la moyenne mobile exponentielle pour obtenir la valeur du jour pour les bandes supérieure et inférieure.

Paramètres : Périodes (P) : La période utilisée dans le calcul de la moyenne mobile exponentielle. Périodes de régression linéaire (L) : La période utilisée pour construire les lignes de la régression linéaire. Déviations (N) : Nombre de déviations utilisées. C'est-à-dire que la valeur de l'erreur standard peut être multipliée par un facteur pour élargir les bandes. M. Kirshenbaum recommande une valeur de 1,75.

Les bandes de Kirshenbaum donnent d'excellentes bandes de volatilité. Comparez ces systèmes avec les bandes de Bollinger. Utilisez les bandes de Kirshenbaum pour mesurer la volatilité autour d'une tendance, et les bandes de Bollinger pour mesurer les changements de tendance.

J'ai trouvé le code suivant : Bande de Kirshenbaum inférieure (KBL)

' Use for the underlying indicator values, indexed by bar index.

Define values() As Number = IndicatorValues(_indicatorKey, barIndex, length + 2 * MathMax(_periods1, _periods2))

' Use for the sum of X times Y, the sum of X, the sum of Y, the sum of X^2

Define sumXY,sumX,sumY,sumXPower As Number

' Use for the EMA smoothing factor.

Define smoothFactor As Number = 2 / (_periods1 + 1)

' Use for the EMA calculation.

Define EMA As Number

' Use for the linear regression calculation.

Define LR As Number

' Use for the average of the squared errors.

Define averageError As Number

' Use for the calculated indicator script values, indexed by bar index.

Define results(length - 1) As Number

' Calculate the indicator script values for the specified bar range.

For i As Integer = length - 1 To 0 Step -1

EMA = 0

' Calculate the indicator script value for the current bar.

For j As Integer = i + _periods1 - 1 To i Step -1

If (EMA 0) Then

EMA = (1 - smoothFactor) * EMA + smoothFactor * values(j)

Else

EMA = values(j)

End If

Next

averageError = 0

' Calculate the linear regression and the average of the squared errors.

For j As Integer = i + _periods2 - 1 To i Step -1

LR = sumXY = sumX = sumY = sumXPower = 0

For k As Integer = j + _periods2 - 1 To j Step -1

sumXY += k * values(k)

sumX += k

sumY += values(k)

sumXPower += k * k

Next

LR = (sumY - (1 * ((_periods2 * sumXY) - (sumX*sumY)) / (_periods2 * sumXPower - (sumX * sumX))) * sumX) / _periods2

averageError += MathPow(values(j) - LR, 2)

Next

averageError = MathSqrt(averageError / _periods2)

results(i) = EMA - averageError

Next

Return results

Merci et salutations

derumuro
Dossiers :
 

Bandes Kirshenbaum

Salut Mladen,

merci pour l'indicateur. Vous avez fait un bon travail et très rapide.

Salutations

derumuro

 

RSI_TripleHull Ind

L'indicateur RSI_TripleHull est déjà affiché ici, mais nous le présentons à nouveau pour éviter de le chercher.

Savez-vous s'il existe une alerte pour cet indicateur ?

Merci.

TEAMTRADER

Dossiers :
 

Le code source se trouve ici :

https://www.mql5.com/en/forum/172972/page2

 

[langtitle=fr]bonjour[/langtitle]

[lang=fr]bonjour à tous,

Je voulais vous demander quel indicateur utilise mladen, celui qui dessine un carré en arrière plan, pouvez-vous me dire lequel c'est ?

Aussi celui en haut à droite qui indique les pips du haut et du bas et ainsi de suite,

merci [/lang]