Desarrollando un algoritmo de autoadaptación (Parte I): Encontrando un patrón básico
En la presente serie de artículos, mostraremos un ejemplo de desarrollo de algoritmos autoadaptativos que tengan en cuenta los factores máximos que surgen en los mercados. Asimismo, veremos la sistematización de estas situaciones, su descripción dentro de una lógica y su consideración a la hora de comerciar. Comenzaremos con un algoritmo muy simple, que con el tiempo adquirirá su propia teoría y evolucionará hasta convertirse en un proyecto muy complejo.
Utilizando hojas de cálculo para construir estrategias comerciales
El artículo describe los principios y técnicas básicos que nos permiten analizar cualquier estrategia usando hojas de cálculo: Excel, Calc, Google. Asimismo, hemos comparado los resultados con el simulador de MetaTrader 5.
Redes neuronales: así de sencillo (Parte 8): Mecanismos de atención
En artículos anteriores, ya hemos puesto a prueba diferentes variantes para organizar las redes neuronales, incluyendo las redes convolucionales, adoptadas de algoritmos de procesamiento de imágenes. En el presente artículo, les proponemos analizar los mecanismos de atención, cuya aparición impulsó el desarrollo de los modelos de lenguaje.
Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Inmersión
En el presente artículo, continuaremos con el tema de la fuerza bruta. Intentaremos destacar mejor los patrones con la ayuda de la nueva versión mejorada de nuestro programa y trataremos de encontrar la diferencia en la estabilidad usando distintos segmentos temporales y diferentes marcos temporales para las cotizaciones.
Remuestreo avanzado y selección de modelos CatBoost con el método de fuerza bruta
Este artículo describe uno de los posibles enfoques respecto a la transformación de datos para mejorar las capacidades generalizadoras del modelo, y también analiza la iteración sobre los modelos CatBoost y la elección del mejor de ellos.
Redes neuronales: así de sencillo (Parte 7): Métodos de optimización adaptativos
En artículos anteriores, hemos usado el descenso de gradiente estocástico para entrenar una red neuronal utilizando una única tasa de aprendizaje para todas las neuronas de la red. En este artículo, proponemos al lector buscar métodos de aprendizaje adaptativo que nos permitan modificar la tasa de aprendizaje de cada neurona. Vamos a echar un vistazo a las ventajas y desventajas de este enfoque.
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales
En el presente artículo, trataremos de mostrar con qué criterio elegir un sistema o señal para invertir nuestro dinero, además de cuál es el mejor enfoque para desarrollar sistemas comerciales y por qué este tema es tan importante en el comercio en fórex.
Conjunto de instrumentos para el marcado manual de gráficos y comercio (Parte II). Haciendo el marcado
Este artículo continúa el ciclo en el que mostramos la creación de una biblioteca capaz de marcar gráficos manualmente utilizando atajos de teclado. El marcado se realiza con líneas rectas y combinaciones de estas. Esta parte habla directamente sobre el propio dibujado utilizando las funciones descritas en la primera parte. La biblioteca se puede conectar a cualquier asesor experto o indicador, lo cual simplifica sustancialmente las tareas de marcado. Esta solución NO UTILIZA dlls externas: todos los comandos se implementan usando las herramientas integradas de MQL.
Redes neuronales: así de sencillo (Parte 6): Experimentos con la tasa de aprendizaje de la red neuronal
Ya hemos hablado sobre algunos tipos de redes neuronales y su implementación. En todos los casos, hemos usado el método de descenso de gradiente para entrenar las redes neuronales, lo cual implica la elección de una tasa de aprendizaje. En este artículo, queremos mostrar con ejemplos lo importante que resulta elegir correctamente la tasa de aprendizaje, y también su impacto en el entrenamiento de una red neuronal.
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 58): Series temporales de los datos de búferes de indicadores
En conclusión del tema de trabajo con series temporales, vamos a organizar el almacenamiento, la búsqueda y la ordenación de los datos que se guardan en los búferes de indicadores. En el futuro, eso nos permitirá realizar el análisis a base de los valores de los indicadores que se crean a base de la biblioteca en nuestros programas. El concepto general de todas las clases de colección de la biblioteca permite encontrar fácilmente los datos necesarios en la colección correspondiente, y por tanto, lo mismo también será posible en la clase que vamos a crear hoy.
Aproximación por fuerza bruta a la búsqueda de patrones
En este artículo buscaremos patrones en el mercado, crearemos asesores expertos usando estos como base y verificaremos cuánto tiempo dichos patrones siguen funcionando y, en general, si se mantienen.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador
En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
El comercio en fórex y sus matemáticas básicas
El artículo pretende describir las principales características del comercio de divisas de la forma más rápida y simple posible, para compartir verdades sencillas con los lectores principiantes. También intentaremos responder a las preguntas más interesantes en el entorno comercial, así como escribir un indicador simple.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores
En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
Redes neuronales: así de sencillo (Parte 5): Cálculos multihilo en OpenCL
Ya hemos analizado algunos tipos de implementación de redes neuronales. Podemos ver con facilidad que se repiten las mismas operaciones para cada neurona de la red. Y aquí sentimos el legítimo deseo de aprovechar las posibilidades que ofrece la computación multihilo de la tecnología moderna para acelerar el proceso de aprendizaje de una red neuronal. En el presente artículo, analizaremos una de las opciones para tal implementación.
¿Cómo ganar $1 000 000 en el trading algorítmico? ¡En los servicios de MQL5.com!
Todo tráder llega al mercado con el objetivo de ganar su primer millón de dólares. ¿Cómo podemos conseguirlo sin grandes riesgos y sin capital inicial? Los servicios MQL5 ofrecen estas posibilidades a los desarrolladores y tráders en cualquier país del mundo.
Gradient boosting en el aprendizaje de máquinas transductivo y activo
En este artículo, el lector podrá familiarizarse con los métodos de aprendizaje automático activo basados en datos reales, descubriendo además cuáles son sus ventajas y desventajas. Puede que estos métodos terminen por ocupar un lugar en su arsenal de modelos de aprendizaje automático. El término transducción fue introducido por Vladímir Naúmovich Vápnik, el inventor de la máquina de vectores de soporte (SVM).
Redes neuronales: así de sencillo (Parte 4): Redes recurrentes
Continuamos nuestra inmersión en el mundo de las redes neuronales. En el presente artículo, hablaremos de las redes neuronales recurrentes. Este tipo de redes neuronales se ofrece para su utilización con series temporales, que son precisamente los gráficos de precios en la plataforma comercial MetaTrader 5.
Redes neuronales: así de sencillo (Parte 3): Redes convolucionales
Continuando el tema de la redes neuronales, proponemos al lector analizar las redes neuronales convolucionales. Este tipo de redes neuronales ha sido desarrollado para buscar objetos en una imagen. Asimismo, analizaremos cómo nos pueden ayudar al operar en los mercados financieros.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico
En este artículo, vamos a hablar de la creación de las clases de los objetos herederos del indicador abstracto básico. Estos objetos nos permitirán crear los asesores expertos tipo indicador, recopilar y obtener estadísticas de valores de datos de diferentes indicadores y precios. Además, crearemos una colección de objetos de indicador de la cual se podrá obtener el acceso a las propiedades y datos de cada indicador creado en el programa.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 53): Clase del indicador abstracto básico
En este artículo, vamos a analizar la creación de la clase del indicador abstracto que a continuación va a usarse como una clase básica para crear objetos de los indicadores estándar y personalizados de la biblioteca.
Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)
El presente artículo describimos un modo de optimización rápida usando el método de enjambre de partículas, y presentamos una implementación en MQL lista para utilizar tanto en el modo de flujo único dentro de un EA, como en el modo paralelo de flujo múltiples como un complemento ejecutado en los agentes locales del simulador.
Redes neuronales: así de sencillo (Parte 2): Entrenamiento y prueba de la red
En el presente artículo, proseguiremos nuestro estudio de las redes neuronales, iniciado en el artículo anterior, y analizaremos un ejemplo de uso en los asesores de la clase CNet que hemos creado. Asimismo, analizaremos dos modelos de red neuronal que han mostrado resultados semejantes tanto en su tiempo de entrenamiento, como en la precisión de sus predicciones.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 49): Indicadores estándar de período, símbolo y búfer múltiples
En el presente artículo, vamos a mejorar las clases de la biblioteca para tener la posibilidad de crear los indicadores estándar de período y símbolo múltiples que requieren varios búferes de indicador para visualizar sus datos.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 50): Indicadores estándar de período y símbolo múltiples con desplazamiento
En el artículo de hoy, vamos a mejorar los métodos de la biblioteca para una representación correcta de los indicadores de período y símbolo múltiples cuyas líneas se muestran en el gráfico del símbolo actual con desplazamiento que se establece en los ajustes. Además, acondicionaremos el contenido dentro de los métodos de trabajo con los indicadores estándar y guardaremos el código sobrante del indicador final en la parte de la biblioteca.
¿Qué son las tendencias y cómo es la estructura de los mercados: de tendencia o plana?
Los tráders hablan con frecuencia sobre tendencias y mercado plano (flat), pero muchos de ellos no entienden correctamente qué es en realidad una tendencia o un flat, y son muy pocos los capaces de explicar estos conceptos. Alrededor de estos conceptos básicos, se ha ido formando un conjunto de prejuicios y confusiones que pervive a día de hoy. Y todo a pesar de que, para ganar dinero, es necesario comprender su sentido matemático y lógico. En este artículo, veremos con detalle qué es una tendencia, qué es el mercado plano, y cómo es la estructura de los mercados: de tendencia, plana, o de otro tipo. Asimismo, analizaremos cómo deberá ser una estrategia para ganar dinero en un mercado de tendencia, cómo deberá ser una estrategia para ganar dinero durante un mercado plano.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 48): Indicadores de periodo y símbolo múltiples en un búfer en una subventana
En el presente artículo, analizaremos la creación de indicadores estándar de periodo y símbolo múltiples que utilizan un búfer de indicador para sus construcciones, y que funcionan en una subventana del gráfico. Asimismo, prepararemos las clases de la biblioteca para trabajar con los indicadores estándar que funcionan en la ventana principal del programa, o que tienen más de un búfer para mostrar sus datos.
Enfoque científico sobre el desarrollo de algoritmos comerciales
En el presente artículo, estudiaremos con ejemplos la metodología de desarrollo de algoritmos comerciales usando un enfoque científico secuencial sobre el análisis de las posibiles patrones de formación de precio y la construcción de algoritmos comerciales basados en dichas leyes.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 47): Indicadores estándar de periodo y símbolo múltiples
En el presente artículo, comenzaremos a desarrollar los métodos de trabajo con los indicadores estándar, lo cual nos permitirá crear indicadores estándar de periodo y símbolo múltiples basados en las clases de la bibliotecas. Asimismo, añadiremos a las clases de las series temporales el evento "Barras Omitidas" y aligeraremos el código del programa principal, trasladando las funciones de preparación de la biblioteca de dicho programa a la clase CEngine.
Teoría de probabilidad y estadística matemática con ejemplos (Parte I): Fundamentos y teoría elemental
El trading siempre ha estado relacionado con la toma de decisiones en condiciones de incertidumbre. Esto significa que los resultados de las decisiones tomadas no son totalmente obvios en el momento en que se toman. Por este motivo, resultan importantes los enfoques teóricos sobre la construcción de los modelos matemáticos que permiten describir estas situaciones ofreciendo información relevante e ilustrativa.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 46): Búferes de indicador de periodo y símbolo múltiples
En el presente artículo, mejoraremos las clases de los objetos de los búferes de indicador para trabajar en el modo multisímbolo. De esta forma, tendremos todo listo para crear en nuestros programas indicadores de periodo y símbolo múltiples. También añadiremos la funcionalidad que falta en los búferes de cálculo, lo cual nos permitirá crear indicadores estándar de periodo y símbolo múltiples.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple
En el artículo, comenzaremos a mejorar los objetos de búfer de indicador y la clase de colección de búferes para trabajar en los modos de periodo y símbolo múltiples. Asimismo, analizaremos el funcionamiento de los objetos de búfer para obtener y mostrar los datos desde cualquier marco temporal en el gráfico actual del símbolo actual.
Aplicación práctica de las redes neuronales en el trading. Pasamos a la práctica
En el presente artículo, ofrecemos la descripción y las instrucciones del uso práctico de los módulos de red neuronal en la plataforma Matlab. Asimismo, comentaremos los aspectos principales de la construcción de un sistema comercial con uso de modelos de redes neuronales (RN). Para que resulte más fácil familiarizarse con el complejo de elementos comprimidos para el presente artículo, hemos tenido que modernizarlo de forma que se puedan compatibilizar varias funciones del modelo de RN.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 44): Las clases de colección de los objetos de búferes de indicador
En el artículo, analizaremos la creación de la clase de colección de los objetos de búferes de indicador y pondremos a prueba la posibilidad de crear cualquier número de búferes para los programas-indicadores, así como la posibilidad de trabajar con estos (el número máximo de búferes que se pueden crear en los indicadores MQL es de 512).
Discretización de series temporales con generación aleatoria de "ruidos"
Nos hemos acostumbrado a analizar el mercado con la ayuda de barras o velas que "hacen cortes" en la serie temporal a intervalos regulares de tiempo. Pero, ¿cuánto deforma realmente este método de discretización la estructura real de los movimientos de mercado? Discretizar una señal sonora a intervalos temporales iguales resulta una solución aceptable, porque una función sonora supone una función que cambia con el tiempo. En sí misma, una señal es una amplitud que depende del tiempo, y esta propiedad en ella es fundamental.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 43): Las clases de los objetos de búferes de indicador
En el artículo, analizaremos la creación de las clases de los objetos de búfer de indicador como herederas del objeto de búfer abstracto, simplificando la declaración y el trabajo con los búferes de indicador al crear programas-indicadores propios basados en la biblioteca DoEasy.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 42): La clase del objeto de búfer de indicador abstracto
En este artículo, comenzamos a construir las clases de los búferes de indicador para la biblioteca DoEasy. En esta parte, crearemos la clase básica de búfer abstracto, que será la principal para crear los diferentes tipos de clases de los búferes de indicador.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 41): Ejemplo de indicador de símbolo y periodo múltiples
En el artículo, analizaremos un ejemplo de creación de un indicador de símbolo y periodo múltiples usando las clases de las series temporales de la biblioteca DoEasy. Dicho indicador representará en la subventana el gráfico de la pareja de divisas seleccionada con el marco temporal seleccionado en forma de velas japonesas. Asimismo, mejoraremos las clases de la biblioteca y crearemos un archivo aparte para guardar las enumeraciones para los parámetros de entrada de los programas y la selección del lenguaje de compilación.
Sobre los métodos de búsqueda de las zonas de sobrecompra/sobreventa. Parte I
Las zonas de sobrecompra/sobreventa caracterizan un determinado estado del mercado que se distingue por el debilitamiento de la dinámica de los precios de los instrumentos financieros. En este caso, además, dicha dinámica negativa se manifiesta en mayor medida en el estadio final del desarrollo de una tendencia de cualquier escala. Y dado que la magnitud del beneficio en el trading depende directamente de la posibilidad de abarcar la máxima amplitud en la tendencia, la precisión a la hora de detectar estas zonas supone una tarea de capital importancia al comerciar con cualquier instrumento financiero.