Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester
Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 36): Q-Learning mit Markov-Ketten
Reinforcement Learning ist neben dem überwachten und dem unüberwachten Lernen eine der drei Hauptrichtungen des maschinellen Lernens. Es geht also um die optimale Steuerung oder das Erlernen der besten langfristigen Strategie, die der Zielfunktion am besten entspricht. Vor diesem Hintergrund untersuchen wir die mögliche Rolle, die ein MLP für den Lernprozess eines von einem Assistenten zusammengestellten Expertenberaters spielt.
Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen
Dieser Artikel enthält eine umfassende Anleitung zur Implementierung eines ausgeklügelten Handelssystems unter Verwendung der Kausalitätsnetzwerkanalyse (Causality Network Analysis, CNA) und der Vektorautoregression (VAR) in MQL5. Es deckt den theoretischen Hintergrund dieser Methoden ab, bietet detaillierte Erklärungen der Schlüsselfunktionen im Handelsalgorithmus und enthält Beispielcode für die Implementierung.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 35): Support-Vektor-Regression
Die Support-Vektor-Regression ist eine idealistische Methode, um eine Funktion oder „Hyperebene“ zu finden, die die Beziehung zwischen zwei Datensätzen am besten beschreibt. Wir versuchen, dies bei der Zeitreihenprognose innerhalb der nutzerdefinierten Klassen des MQL5-Assistenten auszunutzen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 34): Preiseinbettung mit einem unkonventionellen RBM
Restricted Boltzmann Machines sind eine Form von neuronalen Netzen, die Mitte der 1980er Jahre entwickelt wurde, als Rechenressourcen noch unerschwinglich waren. Zu Beginn stützte es sich auf Gibbs Sampling und kontrastive Divergenz, um die Dimensionalität zu reduzieren oder die verborgenen Wahrscheinlichkeiten/Eigenschaften über die eingegebenen Trainingsdatensätze zu erfassen. Wir untersuchen, wie Backpropagation eine ähnliche Leistung erbringen kann, wenn das RBM Preise für ein prognostizierendes Multi-Layer-Perceptron „embeds“ (einbettet).
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen
In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 32): Regularisierung
Die Regularisierung ist eine Form der Bestrafung der Verlustfunktion im Verhältnis zur diskreten Gewichtung, die in den verschiedenen Schichten eines neuronalen Netzes angewendet wird. Wir sehen uns an, welche Bedeutung dies für einige der verschiedenen Regularisierungsformen in Testläufen mit einem vom Assistenten zusammengestellten Expert Advisor haben kann.
Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil III): Visa-Ausgabenindex
In der Welt der Big Data gibt es Millionen von alternativen Datensätzen, die das Potenzial haben, unsere Handelsstrategien zu verbessern. In dieser Artikelserie werden wir Ihnen helfen, die informativsten öffentlichen Datensätze zu finden.
Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR
In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.
Klassische Strategien neu interpretieren (Teil IV): SP500 und US-Staatsanleihen
In dieser Artikelserie analysieren wir klassische Handelsstrategien mit modernen Algorithmen, um festzustellen, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel greifen wir einen klassischen Ansatz für den Handel mit dem SP500 auf, indem wir seine Beziehung zu den US-Staatsanleihen nutzen.
Integration von MQL5 in Datenverarbeitungspakete (Teil 2): Maschinelles Lernen und prädiktive Analytik
In unserer Serie über die Integration von MQL5 mit Datenverarbeitungspaketen befassen wir uns mit der leistungsstarken Kombination aus maschinellem Lernen und prädiktiver Analyse. Wir werden untersuchen, wie MQL5 nahtlos mit gängigen Bibliotheken für maschinelles Lernen verbunden werden kann, um anspruchsvolle Vorhersagemodelle für Finanzmärkte zu ermöglichen.
Сode Lock Algorithmus (CLA)
In diesem Artikel werden wir Zahlenschlösser (Code Locks) neu überdenken und sie von Sicherheitsmechanismen in Werkzeuge zur Lösung komplexer Optimierungsprobleme verwandeln. Entdecken Sie die Welt der Zahlenschlösser, die nicht als einfache Sicherheitsvorrichtungen betrachtet werden, sondern als Inspiration für einen neuen Ansatz zur Optimierung. Wir werden eine ganze Population von Zahlenschlössern (Locks) erstellen, wobei jedes Schloss eine einzigartige Lösung für das Problem darstellt. Wir werden dann einen Algorithmus entwickeln, der diese Schlösser „knackt“ und optimale Lösungen in einer Vielzahl von Bereichen findet, vom maschinellen Lernen bis zur Entwicklung von Handelssystemen.
Kometenschweif-Algorithmus (CTA)
In diesem Artikel befassen wir uns mit der Optimierungsalgorithmus nach dem Kometenschweif (Comet Tail Optimization Algorithm, CTA), der sich von einzigartigen Weltraumobjekten inspirieren lässt - von Kometen und ihren beeindruckenden Schweifen, die sich bei der Annäherung an die Sonne bilden. Der Algorithmus basiert auf dem Konzept der Bewegung von Kometen und ihren Schweifen und ist darauf ausgelegt, optimale Lösungen für Optimierungsprobleme zu finden.
Neuronale Netze leicht gemacht (Teil 88): Zeitreihen-Dense-Encoder (TiDE)
In dem Bestreben, möglichst genaue Prognosen zu erhalten, verkomplizieren die Forscher häufig die Prognosemodelle. Dies wiederum führt zu höheren Kosten für Training und Wartung der Modelle. Ist eine solche Erhöhung immer gerechtfertigt? In diesem Artikel wird ein Algorithmus vorgestellt, der die Einfachheit und Schnelligkeit linearer Modelle nutzt und Ergebnisse liefert, die mit den besten Modellen mit einer komplexeren Architektur vergleichbar sind.
Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)
Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 31): Auswahl der Verlustfunktion
Die Verlustfunktion ist die wichtigste Kennzahl für Algorithmen des maschinellen Lernens, die eine Rückmeldung für den Trainingsprozess liefert, indem sie angibt, wie gut ein bestimmter Satz von Parametern im Vergleich zum beabsichtigten Ziel funktioniert. Wir untersuchen die verschiedenen Formate dieser Funktion in einer nutzerdefinierten MQL5-Assistenten-Klasse.
Datenwissenschaft und ML (Teil 29): Wichtige Tipps für die Auswahl der besten Forex-Daten für AI-Trainingszwecke
In diesem Artikel befassen wir uns eingehend mit den entscheidenden Aspekten der Auswahl der relevantesten und hochwertigsten Forex-Daten, um die Leistung von KI-Modellen zu verbessern.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 30): Spotlight auf Batch-Normalisierung beim maschinellen Lernen
Die Batch-Normalisierung ist die Vorverarbeitung von Daten, bevor sie in einen Algorithmus für maschinelles Lernen, z. B. ein neuronales Netz, eingespeist werden. Dies geschieht immer unter Berücksichtigung der Art der Aktivierung, die der Algorithmus verwenden soll. Wir untersuchen daher die verschiedenen Ansätze, die man mit Hilfe eines von einem Assistenten zusammengestellten Expert Advisors verfolgen kann, um die Vorteile dieses Ansatzes zu nutzen.
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI
Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
Ihrer eigenes LLM in einen EA integrieren (Teil 5): Handelsstrategie mit LLMs(I) entwickeln und testen – Feinabstimmung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs
In dieser Artikelserie werden wir klassische Handelsstrategien empirisch analysieren, um zu sehen, ob wir sie mithilfe von KI verbessern können. In der heutigen Diskussion haben wir versucht, mithilfe des Modells der linearen Diskriminanzanalyse höhere Hochs und tiefere Tiefs vorherzusagen.
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze
Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
Ein Beispiel für automatisch optimierte Take-Profits und Indikatorparameter mit SMA und EMA
Dieser Artikel stellt einen hochentwickelten Expert Advisor für den Devisenhandel vor, der maschinelles Lernen mit technischer Analyse kombiniert. Es konzentriert sich auf den Handel mit Apple-Aktien und bietet adaptive Optimierung, Risikomanagement und mehrere Strategien. Das Backtesting zeigt vielversprechende Ergebnisse mit hoher Rentabilität, aber auch erheblichen Drawdowns, was auf Potenzial für eine weitere Verfeinerung hinweist.
Integration von MQL5 in Datenverarbeitungspakete (Teil 1): Fortgeschrittene Datenanalyse und statistische Verarbeitung
Die Integration ermöglicht einen nahtlosen Arbeitsablauf, bei dem Finanzrohdaten aus MQL5 in Datenverarbeitungspakete wie Jupyter Lab für erweiterte Analysen einschließlich statistischer Tests importiert werden können.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 29): Fortsetzung zu Lernraten mit MLPs
Zum Abschluss unserer Betrachtung der Empfindlichkeit der Lernrate für die Leistung von Expert Advisors untersuchen wir in erster Linie die adaptiven Lernraten. Diese Lernraten sollen für jeden Parameter in einer Schicht während des Trainingsprozesses angepasst werden, und so bewerten wir die potenziellen Vorteile gegenüber der erwarteten Leistungsgebühr.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten
Die Lernrate ist eine Schrittgröße in Richtung eines Trainingsziels in den Trainingsprozessen vieler maschineller Lernalgorithmen. Wir untersuchen die Auswirkungen, die die vielen Zeitpläne und Formate auf die Leistung eines Generative Adversarial Network haben können, eine Art neuronales Netz, das wir in einem früheren Artikel untersucht haben.
Datenwissenschaft und ML (Teil 27): Convolutional Neural Networks (CNNs) in MetaTrader 5 Trading Bots — funktioniert das?
Faltende neuronale Netzwerke (Convolutional Neural Networks, CNN) sind für ihre Fähigkeiten bei der Erkennung von Mustern in Bildern und Videos bekannt und werden in den verschiedensten Bereichen eingesetzt. In diesem Artikel untersuchen wir das Potenzial von CNNs zur Erkennung wertvoller Muster auf den Finanzmärkten und zur Erzeugung effektiver Handelssignale für MetaTrader 5-Handelsroboter. Lassen Sie uns herausfinden, wie diese tiefgehende maschinelle Lerntechnik für intelligentere Handelsentscheidungen genutzt werden kann.
Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching
Die Vorhersage spielt eine wichtige Rolle in der Zeitreihenanalyse. Im neuen Artikel werden wir über die Vorteile des Zeitreihen-Patchings sprechen.
Neuronale Netze leicht gemacht (Teil 86): U-förmiger Transformator
Wir untersuchen weiterhin Algorithmen für die Zeitreihenprognose. In diesem Artikel werden wir eine andere Methode besprechen: den U-förmigen Transformator.
Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage
In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität
Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.
Neuronale Netze leicht gemacht (Teil 84): Umkehrbare Normalisierung (RevIN)
Wir wissen bereits, dass die Vorverarbeitung der Eingabedaten eine wichtige Rolle für die Stabilität der Modellbildung spielt. Für die Online-Verarbeitung von „rohen“ Eingabedaten verwenden wir häufig eine Batch-Normalisierungsschicht. Aber manchmal brauchen wir ein umgekehrtes Verfahren. In diesem Artikel wird einer der möglichen Ansätze zur Lösung dieses Problems erörtert.
Brain Storm Optimierungsalgorithmus (Teil I): Clustering
In diesem Artikel befassen wir uns mit einer innovativen Optimierungsmethode namens BSO (Brain Storm Optimization), die von einem natürlichen Phänomen namens „Brainstorming“ inspiriert ist. Wir werden auch einen neuen Ansatz zur Lösung von multimodalen Optimierungsproblemen diskutieren, den die BSO-Methode anwendet. Es ermöglicht die Suche nach mehreren optimalen Lösungen, ohne dass die Anzahl der Teilpopulationen vorher festgelegt werden muss. Wir werden auch die Clustermethoden K-Means und K-Means++ betrachten.
Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation
In diesem Artikel wird der Conformer-Algorithmus vorgestellt, der ursprünglich für die Wettervorhersage entwickelt wurde, die in Bezug auf Variabilität und Launenhaftigkeit mit den Finanzmärkten verglichen werden kann. Conformer ist eine komplexe Methode. Es kombiniert die Vorteile von Aufmerksamkeitsmodellen und gewöhnlichen Differentialgleichungen.
Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)
In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.
Zeitreihen-Clustering für kausales Schlussfolgern
Clustering-Algorithmen beim maschinellen Lernen sind wichtige unüberwachte Lernalgorithmen, die die ursprünglichen Daten in Gruppen mit ähnlichen Beobachtungen unterteilen können. Anhand dieser Gruppen können Sie den Markt für ein bestimmtes Cluster analysieren, anhand neuer Daten nach den stabilsten Clustern suchen und kausale Schlüsse ziehen. In dem Artikel wird eine originelle Methode für das Clustering von Zeitreihen in Python vorgeschlagen.
Matrix-Faktorisierung: Die Grundlagen
Da das Ziel hier didaktisch ist, werden wir so einfach wie möglich vorgehen. Das heißt, wir werden nur das implementieren, was wir brauchen: Matrixmultiplikation. Sie werden heute sehen, dass dies ausreicht, um die Matrix-Skalar-Multiplikation zu simulieren. Die größte Schwierigkeit, auf die viele Menschen bei der Implementierung von Code mit Matrixfaktorisierung stoßen, ist folgende: Im Gegensatz zur skalaren Faktorisierung, bei der in fast allen Fällen die Reihenfolge der Faktoren das Ergebnis nicht verändert, ist dies bei der Verwendung von Matrizen nicht der Fall.
Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze
Im vorigen Artikel haben wir ein einfaches RNN besprochen, das trotz seiner Unfähigkeit, langfristige Abhängigkeiten in den Daten zu verstehen, in der Lage war, eine profitable Strategie zu entwickeln. In diesem Artikel werden sowohl das Long-Short Term Memory (LSTM) als auch die Gated Recurrent Unit (GRU) behandelt. Diese beiden wurden eingeführt, um die Unzulänglichkeiten eines einfachen RNN zu überwinden und es zu überlisten.
SP500 Handelsstrategie in MQL5 für Anfänger
Entdecken Sie, wie Sie MQL5 nutzen können, um den S&P 500 mit Präzision zu prognostizieren, indem Sie die klassische technische Analyse für zusätzliche Stabilität einbeziehen und Algorithmen mit bewährten Prinzipien für robuste Markteinblicke kombinieren.
Eigenvektoren und Eigenwerte: Explorative Datenanalyse in MetaTrader 5
In diesem Artikel werden verschiedene Möglichkeiten untersucht, wie Eigenvektoren und Eigenwerte in der explorativen Datenanalyse eingesetzt werden können, um einzigartige Beziehungen in den Daten aufzudecken.