
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压
AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。

使用Python和MQL5开发机器人(第一部分):数据预处理
基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。

如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉
本文中的多货币智能系统是一款智能交易系统或交易机器人,它利用两条 RSI 指标线的交叉,即与慢速 RSI 与快速 RSI 两线相交。

因果推理中的倾向性评分
本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。

因果推断中的时间序列聚类
在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。

开发多币种 EA 交易(第 4 部分):虚拟挂单和保存状态
在开始开发多币种 EA 后,我们已经取得了一些成果,并成功地进行了多次代码改进迭代。但是,我们的 EA 无法处理挂单,也无法在终端重启后恢复运行。让我们添加这些功能。

神经网络变得简单(第 72 部分):噪声环境下预测轨迹
预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。

开发回放系统(第 43 部分):Chart Trade 项目(II)
大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。

改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA
在本文中,我们探讨了经典的网格策略,详解 MQL5 的智能交易系统的自动化,并初步分析回测结果。我们强调了该策略对高持有能力的需求,并概括了在未来分期分批优化距离、止盈和手数等关键参数的计划。该系列旨在提高交易策略效率,以及针对不同市场条件的适配性。

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM
限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。

开发多币种 EA 交易(第 3 部分):架构修改
我们在开发多币种 EA 方面已经取得了一些进展,该 EA 有几个并行工作的策略。考虑到所积累的经验,让我们回顾一下我们解决方案的架构,并尝试在我们走得太远之前对其进行改进吧。

构建和测试肯特纳通道交易系统
在本文中,我们将尝试使用金融市场中一个非常重要的概念 - 波动性 - 来构建交易系统。我们将在了解肯特纳通道(Keltner Channel)指标后提供一个基于该指标的交易系统,并介绍如何对其进行编码,以及如何根据简单的交易策略创建一个交易系统,然后在不同的资产上进行测试。

神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)
在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。

在 MQL5 中实现广义赫斯特指数和方差比检验
在本文中,我们将研究如何利用广义赫斯特指数(Generalized Hurst Exponent)和方差比检验(Variance Ratio Test)来分析 MQL5 中价格序列的行为。

开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位
让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)
在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。

神经网络变得简单(第 68 部分):离线优先引导政策优化
自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。

开发回放系统(第 41 部分):启动第二阶段(二)
如果到目前为止,你觉得一切都很好,那就说明你在开始开发应用程序时,并没有真正考虑到长远的问题。随着时间的推移,你将不再需要为新的应用程序编程,只需让它们协同工作即可。让我们看看如何完成鼠标指标的组装。

开发回放系统(第 38 部分):铺路(II)
许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。

构建和测试 Aroon 交易系统
在本文中,我们将学习在了解了 Aroon 指标(阿隆指标)的基础知识和基于该指标构建交易系统的必要步骤之后,如何构建 Aroon 交易系统。建立这个交易系统后,我们将对其进行测试,看看它是否能盈利,还是需要进一步优化。

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

MetaTrader 5 和 R 进行算法交易新手指南
当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。

数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学
探索算法炼金术的秘密,我们将引导您融会贯通如何在解码金融领域时将艺术性和精确性相结合。揭示随机森林如何将数据转化为预测能力,为驾驭股票市场的复杂场景提供独特的视角。加入我们的旅程,进入金融魔法的心脏地带,此处我们会揭开随机森林在塑造市场命运、及解锁赚钱机会之门方面之角色的神秘面纱

数据科学和机器学习(第 16 部分):全新面貌的决策树
在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。

改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA
我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。

开发回放系统(第 40 部分):启动第二阶段(一)
今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。

开发回放系统(第 39 部分):铺平道路(三)
在进入开发的第二阶段之前,我们需要修正一些想法。您知道如何让 MQL5 满足您的需求吗?您是否尝试过超出文档所包含的范围?如果没有,那就做好准备吧。因为我们将做一些大多数人通常不会做的事情。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2
在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。

神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。

软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1
来自设计范式文献的一篇新文章,我们将看到类型其一,即行为范式,从而理解我们如何有效地在所创建对象之间构建通信方法。通过完成这些行为范式,我们就能够理解创建和构建可重用、可扩展、经过测试的软件。

利用 Python 和 MQL5 构建您的第一个玻璃盒模型
如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。

开发回放系统(第 37 部分):铺平道路 (一)
在这篇文章中,我们终于要开始做我们早就想做的事情了。之前,由于缺乏 "坚实的基础",我没有信心公开介绍这部分内容。现在我有了这样做的基础。我建议您尽可能集中精力理解本文的内容。我指的不仅仅是阅读,我想强调的是,如果你不理解这篇文章,你可能就是完全放弃了理解以后文章内容的希望。