有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
preview
您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。
preview
学习如何基于加速(Accelerator)振荡器设计交易系统

学习如何基于加速(Accelerator)振荡器设计交易系统

我们系列中的一篇新文章,介绍如何通过最流行的技术指标创建简单的交易系统。 我们将学习一个新的加速(Accelerator)振荡器指标,我们将学习如何利用它来设计交易系统。
preview
神经网络变得轻松(第三十部分):遗传算法

神经网络变得轻松(第三十部分):遗传算法

今天我想给大家介绍一种略有不同的学习方法。 我们可以说它是从达尔文的进化论中借鉴而来的。 它可能比前面所讨论方法的可控性更低,但它允许训练不可微分的模型。
preview
学习如何基于奥森姆(Awesome)振荡器设计交易系统

学习如何基于奥森姆(Awesome)振荡器设计交易系统

在我们系列的这篇新文章中,我们将学习一种也许对我们的交易有用的新技术工具。 它是奥森姆(Awesome)振荡器((AO)指标。 我们将学习如何基于该指标设计交易系统。
preview
神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。
preview
学习如何基于相对活力(Vigor)指数设计交易系统

学习如何基于相对活力(Vigor)指数设计交易系统

我们系列中的新篇章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习如何基于相对活力(Vigor)指数指标来做到这一点。
preview
从头开始开发智能交易系统(第 31 部分):面向未来((IV)

从头开始开发智能交易系统(第 31 部分):面向未来((IV)

我们继续从 EA 中删除单独的部件。 这是本系列中的最后一篇文章。 并且最后要移除的是声音系统。 如果您之前没有关注过这些文章系列,可能会有点困惑。
preview
从头开始开发智能交易系统(第 29 部分):谈话平台

从头开始开发智能交易系统(第 29 部分):谈话平台

在本文中,我们将学习如何让 MetaTrader 5 平台谈话。 我们如何才能让 EA 更有趣呢? 金融市场交易往往过于无聊和单调,但我们能够令这项工作少些无趣。 请注意,对于那些经历过上瘾等问题的人来说,这个项目可能是危险的。 然而,在一般情况下,它只会让事情聊胜于无。
preview
学习如何基于 DeMarker 设计交易系统

学习如何基于 DeMarker 设计交易系统

此为我们系列中的一篇新文章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将介绍如何基于 DeMarker 指标创建交易系统。
preview
神经网络变得轻松(第二十八部分):政策梯度算法

神经网络变得轻松(第二十八部分):政策梯度算法

我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。
preview
学习如何基于 VIDYA 设计交易系统

学习如何基于 VIDYA 设计交易系统

欢迎阅读我们的关于学习如何依据最流行的技术指标设计交易系统系列的新篇章,在本文中,我们将学习一种新的技术工具,并学习如何依据可变指数动态平均线(VIDYA)设计交易系统。
preview
神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

我们继续研究强化学习。 在本文中,我们将与深度 Q-学习方法打交道。 DeepMind 团队曾运用这种方法创建了一个模型,在玩 Atari 电脑游戏时其表现优于人类。 我认为评估该技术来解决交易问题的可能性将会很有益处。
preview
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
市场数学:盈利、亏损、和成本
市场数学:盈利、亏损、和成本

市场数学:盈利、亏损、和成本

在本文中,我将向您展示如何计算任何交易的总盈利或亏损,包括佣金和掉期利息。 我会提供最精准的数学模型,并依据它来编写代码,之后将其与标准进行比较。 此外,我还将尝试进入主要 MQL5 函数的内部来计算利润,并从规则中获取所有必要值的根底。
preview
从头开始开发智能交易系统(第 28 部分):面向未来((III)

从头开始开发智能交易系统(第 28 部分):面向未来((III)

我们的订单系统有一项任务仍然尚未完成,但我们终将把它搞定。 MetaTrader 5 提供了一个允许创建和更正订单参数值的单据系统。 该思路是拥有一个智能系统,可令相同的票据系统更快、更高效。
preview
学习如何基于牛市力量设计交易系统

学习如何基于牛市力量设计交易系统

欢迎来到我们的关于学习如何基于最流行的技术指标设计交易系统系列的新篇章,这一篇学习如何基于牛市力量技术指标设计交易系统。
preview
神经网络变得轻松(第二十四部分):改进迁移学习工具

神经网络变得轻松(第二十四部分):改进迁移学习工具

在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?
preview
学习如何基于熊市力量设计交易系统

学习如何基于熊市力量设计交易系统

欢迎来到我们的关于学习如何基于最流行的技术指标设计交易系统系列的新篇章,这一篇学习如何基于熊市力量技术指标设计交易系统。
preview
从头开始开发智能交易系统(第 27 部分):面向未来((II)

从头开始开发智能交易系统(第 27 部分):面向未来((II)

我们迈进更完整的图表上的直接订单系统。 在本文中,我将展示一种修复订单系统的方法,或者更确切地说,令其更直观。
preview
神经网络变得轻松(第二十三部分):构建迁移学习工具

神经网络变得轻松(第二十三部分):构建迁移学习工具

在本系列文章中,我们已经不止一次提到了迁移学习。 然而,都只是提及而已。 在本文中,我建议填补这一空白,并仔细研究迁移学习。
preview
数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

许多人喜欢它们,但却只有少数人理解神经网络背后的整个操作。 在本文中,我尝试用淳朴的语言来解释前馈多层感知,解密其封闭大门背后的一切。
preview
从头开始开发智能交易系统(第 26 部分):面向未来(I)

从头开始开发智能交易系统(第 26 部分):面向未来(I)

今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。
preview
学习如何基于强力指数(Force Index)设计交易系统

学习如何基于强力指数(Force Index)设计交易系统

欢迎阅读我们系列中的新篇章,有关如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习一个新的技术指标,以及如何运用强力指数(Force Index)指标创建交易系统。
preview
学习如何基于柴金(Chaikin)振荡器设计交易系统

学习如何基于柴金(Chaikin)振荡器设计交易系统

欢迎阅读我们系列的新篇章,学习如何基于最流行的技术指标设计交易系统。 通读这篇新文章,我们将学习如何基于柴金(Chaikin)振荡器指标设计交易系统。
preview
数据科学与机器学习(第 06 部分):梯度下降

数据科学与机器学习(第 06 部分):梯度下降

梯度下降在训练神经网络和许多机器学习算法中起着重要作用。 它是一种快速而智能的算法,尽管它的工作令人印象深刻,但它仍然被许多数据科学家误解,我们来看看有关它的全部。
preview
从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

在本文中,我们将朝着 EA 的性能迈出最后一步。 为此,请做好长时间阅读的准备。 为了令我们的智能交易系统可靠,我们首先从代码中删除不属于交易系统的所有内容。
preview
从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)

在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。
preview
神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

在上一篇文章中,我们已熟悉了自动编码器算法。 像其它任何算法一样,它也有其优点和缺点。 在其原始实现中,自动编码器会尽可能多地将对象与训练样本分开。 这次我们将讨论如何应对它的一些缺点。
preview
学习如何基于标准偏差设计交易系统

学习如何基于标准偏差设计交易系统

此为我们该系列中的一篇新文章,介绍如何利用 MetaTrader 5 交易平台中最受欢迎的技术指标来设计交易系统。 在这篇新文章中,我们将学习如何运用标准偏差指标设计交易系统。
preview
神经网络实验(第 2 部分):智能神经网络优化

神经网络实验(第 2 部分):智能神经网络优化

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。
preview
神经网络变得轻松(第二十部分):自动编码器

神经网络变得轻松(第二十部分):自动编码器

我们继续研究无监督学习算法。 一些读者可能对最近发表的与神经网络主题的相关性有疑问。 在这篇新文章中,我们回到了对神经网络的研究。
preview
从头开始开发智能交易系统(第 23 部分):新订单系统 (VI)

从头开始开发智能交易系统(第 23 部分):新订单系统 (VI)

我们将会令订单系统更加灵活。 在此,我们将研究代码的修改,令其更加灵活,而这也让我们能够更快地修改持仓破位价。
preview
您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射

您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射

这些系列文章所提议的是,MQL5 向导应作为交易员的支柱。 为什么呢? 因为交易员不仅可以利用 MQL5 向导装配他的新想法来节省时间,还可以大大减少重复编码带来的错误;他最终可把精力投向自我交易哲学中的几个关键领域。
preview
从头开始开发智能交易系统(第 22 部分):新订单系统 (V)

从头开始开发智能交易系统(第 22 部分):新订单系统 (V)

今天,我们将继续开发新订单系统。 实现一个新系统并非那么容易,因为我们经常会遇到各种问题令过程复杂化。 当这些问题出现时,我们必须停下来重新分析我们前进的方向。
preview
学习如何基于 Williams PR 设计交易系统

学习如何基于 Williams PR 设计交易系统

本系列中的一篇新文章,介绍了如何依据 MQL5 最流行的技术指标为 MetaTrader 5 设计交易系统。 在本文中,我们将学习如何依据 Williams‘ %R 指标设计交易系统。
preview
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。
preview
从头开始开发智能交易系统(第 21 部分):新订单系统 (IV)

从头开始开发智能交易系统(第 21 部分):新订单系统 (IV)

最后,视觉系统将开始工作,尽管它尚未完工。 在此,我们将完成主要更改。 这只是它们当中很少一部份,但都是必要的。 嗯,整个工作将非常有趣。
preview
学习如何基于 Ichimoku 设计交易系统

学习如何基于 Ichimoku 设计交易系统

这是我们系列中有关如何基于最热门指标设计交易系统的一篇新文章,这回我们将详细讨论 Ichimoku 指标,以及如何依据该指标设计交易系统。
preview
神经网络变得轻松(第十八部分):关联规则

神经网络变得轻松(第十八部分):关联规则

作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。
preview
数据科学和机器学习(第 05 部分):决策树

数据科学和机器学习(第 05 部分):决策树

决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。