有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
构建自动运行的 EA(第 05 部分):手工触发器(II)

构建自动运行的 EA(第 05 部分):手工触发器(II)

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 在上一篇文章的末尾,我建议允许手工操作 EA 是合适的,至少在一段时间内。
preview
构建自动运行的 EA(第 04 部分):手工触发器(I)

构建自动运行的 EA(第 04 部分):手工触发器(I)

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。
preview
构建自动运行的 EA(第 03 部分):新函数

构建自动运行的 EA(第 03 部分):新函数

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 在上一篇文章中,我们已启动开发一个在自动化 EA 中使用的订单系统。 然而,我们只创建了一个必要的函数。
preview
构建自动运行的 EA(第 02 部分):开始编码

构建自动运行的 EA(第 02 部分):开始编码

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 在上一篇文章中,我们讨论了任何人在继续创建自动交易的智能系统之前需要了解的第一步。 我们首先研究了概念和结构。
preview
构建自动运行的 EA(第 01 部分):概念和结构

构建自动运行的 EA(第 01 部分):概念和结构

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。
preview
如何利用 MQL5 处理指示线

如何利用 MQL5 处理指示线

在本文中,您将发现利用 MQL5 处理最重要的指示线(如趋势线、支撑线和阻力线)的方法。
preview
神经网络变得轻松(第三十二部分):分布式 Q-学习

神经网络变得轻松(第三十二部分):分布式 Q-学习

我们在本系列的早期文章中领略了 Q-学习方法。 此方法均化每次操作的奖励。 2017 年出现了两篇论文,在研究奖励分配函数时展现出了极大的成功。 我们来研究运用这种技术解决我们问题的可能性。
preview
数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类

数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类

数据挖掘在数据科学家和交易者看来至关重要,因为很多时候,数据并非如我们想象的那么简单。 人类的肉眼无法理解数据集中的不显眼底层形态和关系,也许 K-means 算法可以帮助我们解决这个问题。 我们来发掘一下...
preview
学习如何基于分形(Fractals)设计交易系统

学习如何基于分形(Fractals)设计交易系统

本文是我们关于如何基于最流行的技术指标设计交易系统的系列中的一篇新文章。 我们将学习一个新的指标,即分形(Fractals)指标,我们将学习如何设计一个基于它的交易系统,从而能在 MetaTrader 5 终端中执行。
preview
神经网络变得轻松(第三十一部分):进化算法

神经网络变得轻松(第三十一部分):进化算法

在上一篇文章中,我们开始探索非梯度优化方法。 我们领略了遗传算法。 今天,我们将继续这个话题,并将研究另一类进化算法。
preview
学习如何基于鳄鱼(Alligator)设计交易系统

学习如何基于鳄鱼(Alligator)设计交易系统

在本文中,我们将完成有关如何基于最流行的技术指标设计交易系统的系列文章。 我们将学习如何创建基于鳄鱼指标的交易系统。
preview
利用智能系统进行风险和资本管理

利用智能系统进行风险和资本管理

本文是有关您在回测报告中看不到的内容,使用自动交易软件时您应该期望什么;如果您正在使用智能系统,该如何管理您的资金;以及如果您正在使用自动化过程,如何弥补重大亏损从而坚持交易活动。
preview
您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。
preview
学习如何基于加速(Accelerator)振荡器设计交易系统

学习如何基于加速(Accelerator)振荡器设计交易系统

我们系列中的一篇新文章,介绍如何通过最流行的技术指标创建简单的交易系统。 我们将学习一个新的加速(Accelerator)振荡器指标,我们将学习如何利用它来设计交易系统。
preview
神经网络变得轻松(第三十部分):遗传算法

神经网络变得轻松(第三十部分):遗传算法

今天我想给大家介绍一种略有不同的学习方法。 我们可以说它是从达尔文的进化论中借鉴而来的。 它可能比前面所讨论方法的可控性更低,但它允许训练不可微分的模型。
preview
学习如何基于奥森姆(Awesome)振荡器设计交易系统

学习如何基于奥森姆(Awesome)振荡器设计交易系统

在我们系列的这篇新文章中,我们将学习一种也许对我们的交易有用的新技术工具。 它是奥森姆(Awesome)振荡器((AO)指标。 我们将学习如何基于该指标设计交易系统。
preview
神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。
preview
学习如何基于相对活力(Vigor)指数设计交易系统

学习如何基于相对活力(Vigor)指数设计交易系统

我们系列中的新篇章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习如何基于相对活力(Vigor)指数指标来做到这一点。
preview
从头开始开发智能交易系统(第 29 部分):谈话平台

从头开始开发智能交易系统(第 29 部分):谈话平台

在本文中,我们将学习如何让 MetaTrader 5 平台谈话。 我们如何才能让 EA 更有趣呢? 金融市场交易往往过于无聊和单调,但我们能够令这项工作少些无趣。 请注意,对于那些经历过上瘾等问题的人来说,这个项目可能是危险的。 然而,在一般情况下,它只会让事情聊胜于无。
preview
学习如何基于 DeMarker 设计交易系统

学习如何基于 DeMarker 设计交易系统

此为我们系列中的一篇新文章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将介绍如何基于 DeMarker 指标创建交易系统。
preview
神经网络变得轻松(第二十八部分):政策梯度算法

神经网络变得轻松(第二十八部分):政策梯度算法

我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。
preview
学习如何基于 VIDYA 设计交易系统

学习如何基于 VIDYA 设计交易系统

欢迎阅读我们的关于学习如何依据最流行的技术指标设计交易系统系列的新篇章,在本文中,我们将学习一种新的技术工具,并学习如何依据可变指数动态平均线(VIDYA)设计交易系统。
preview
神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

我们继续研究强化学习。 在本文中,我们将与深度 Q-学习方法打交道。 DeepMind 团队曾运用这种方法创建了一个模型,在玩 Atari 电脑游戏时其表现优于人类。 我认为评估该技术来解决交易问题的可能性将会很有益处。
preview
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
preview
神经网络变得轻松(第二十五部分):实践迁移学习

神经网络变得轻松(第二十五部分):实践迁移学习

在最晚的两篇文章中,我们开发了一个创建和编辑神经网络模型的工具。 现在是时候通过实践示例来评估迁移学习技术的潜在用途了。
preview
从头开始开发智能交易系统(第 28 部分):面向未来((III)

从头开始开发智能交易系统(第 28 部分):面向未来((III)

我们的订单系统有一项任务仍然尚未完成,但我们终将把它搞定。 MetaTrader 5 提供了一个允许创建和更正订单参数值的单据系统。 该思路是拥有一个智能系统,可令相同的票据系统更快、更高效。
preview
学习如何基于牛市力量设计交易系统

学习如何基于牛市力量设计交易系统

欢迎来到我们的关于学习如何基于最流行的技术指标设计交易系统系列的新篇章,这一篇学习如何基于牛市力量技术指标设计交易系统。
preview
神经网络变得轻松(第二十四部分):改进迁移学习工具

神经网络变得轻松(第二十四部分):改进迁移学习工具

在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?
preview
学习如何基于熊市力量设计交易系统

学习如何基于熊市力量设计交易系统

欢迎来到我们的关于学习如何基于最流行的技术指标设计交易系统系列的新篇章,这一篇学习如何基于熊市力量技术指标设计交易系统。
preview
从头开始开发智能交易系统(第 27 部分):面向未来((II)

从头开始开发智能交易系统(第 27 部分):面向未来((II)

我们迈进更完整的图表上的直接订单系统。 在本文中,我将展示一种修复订单系统的方法,或者更确切地说,令其更直观。
preview
神经网络变得轻松(第二十三部分):构建迁移学习工具

神经网络变得轻松(第二十三部分):构建迁移学习工具

在本系列文章中,我们已经不止一次提到了迁移学习。 然而,都只是提及而已。 在本文中,我建议填补这一空白,并仔细研究迁移学习。
preview
数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

许多人喜欢它们,但却只有少数人理解神经网络背后的整个操作。 在本文中,我尝试用淳朴的语言来解释前馈多层感知,解密其封闭大门背后的一切。
preview
从头开始开发智能交易系统(第 26 部分):面向未来(I)

从头开始开发智能交易系统(第 26 部分):面向未来(I)

今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。
preview
学习如何基于强力指数(Force Index)设计交易系统

学习如何基于强力指数(Force Index)设计交易系统

欢迎阅读我们系列中的新篇章,有关如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习一个新的技术指标,以及如何运用强力指数(Force Index)指标创建交易系统。
preview
学习如何基于柴金(Chaikin)振荡器设计交易系统

学习如何基于柴金(Chaikin)振荡器设计交易系统

欢迎阅读我们系列的新篇章,学习如何基于最流行的技术指标设计交易系统。 通读这篇新文章,我们将学习如何基于柴金(Chaikin)振荡器指标设计交易系统。
preview
神经网络变得轻松(第二十二部分):递归模型的无监督学习

神经网络变得轻松(第二十二部分):递归模型的无监督学习

我们继续研究无监督学习算法。 这次我建议我们讨论自动编码器应用于递归模型训练时的特性。
preview
数据科学与机器学习(第 06 部分):梯度下降

数据科学与机器学习(第 06 部分):梯度下降

梯度下降在训练神经网络和许多机器学习算法中起着重要作用。 它是一种快速而智能的算法,尽管它的工作令人印象深刻,但它仍然被许多数据科学家误解,我们来看看有关它的全部。
preview
从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

在本文中,我们将朝着 EA 的性能迈出最后一步。 为此,请做好长时间阅读的准备。 为了令我们的智能交易系统可靠,我们首先从代码中删除不属于交易系统的所有内容。
preview
从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)

在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。
preview
神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

在上一篇文章中,我们已熟悉了自动编码器算法。 像其它任何算法一样,它也有其优点和缺点。 在其原始实现中,自动编码器会尽可能多地将对象与训练样本分开。 这次我们将讨论如何应对它的一些缺点。