
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)
Aqui vamos começar a ver como implementar algo realmente bem interessante e curioso. Mas ao mesmo tempo extremamente complicado por conta de algumas questões que muitos confundem. Mas pior do que as confundir, é o fato de que alguns operadores que se dizem profissionais, não fazem ideia a importância de tais conceitos no mercado de capital. Sim, apesar do foco aqui ser programação, entender algumas questões que envolvem operações em mercados, é de extrema valia para o que iremos começar a implementar aqui.

Como desenvolver um sistema de negociação baseado no indicador Bear's Power
Bem-vindo a um novo artigo em nossa série sobre como desenvolver um sistema de negociação com base nos indicadores técnicos mais populares, aqui está um novo artigo sobre como aprender a desenvolver um sistema de negociação pelo indicador técnico Bear's Power.

DoEasy. Controles (Parte 22): SplitContainer. Alterando as propriedades do objeto criado
Neste artigo, implementamos a alteração das propriedades e da aparência do controle SplitContainer após sua criação.

Permutação das barras de preços no MQL5
Neste artigo, apresentamos um algoritmo de permutação das barras de preços e detalhamos como os testes de permutação podem ser usados para identificar casos em que o desempenho de uma estratégia é inventado com o objetivo de enganar potenciais compradores de Expert Advisors.

Simulação de mercado (Parte 06): Transferindo informações do MetraTrader 5 para o Excel
Muita gente, principalmente os não programadores, tem muita dificuldade em conseguir transferir informações entre o MetaTrader 5 e outros programas. Um destes programas é o Excel. Muitos usam o Excel como uma forma de gerenciar e manter o seu controle de risco. Sendo um programa muito bom e fácil de aprender a utilizar. Mesmo para quem não é programador VBA. Aqui vou mostrar uma forma de fazer a comunicação entre o MetaTrader 5 e o Excel (Método super-simples).

Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)
A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.

Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução
A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.

Redes neurais de maneira fácil (Parte 45): Ensinando habilidades para investigar estados
Aprender habilidades úteis sem uma função de recompensa explícita é um dos principais desafios do aprendizado por reforço hierárquico. Anteriormente, já nos familiarizamos com dois algoritmos para resolver esse problema. Mas a questão da completa exploração do ambiente ainda está em aberto. Neste artigo, é apresentada uma abordagem diferente para o treinamento de habilidades, cujo uso depende diretamente do estado atual do sistema.

Teoria das Categorias em MQL5 (Parte 13): Eventos de calendário com esquemas de banco de dados
Neste artigo, discutimos como os esquemas de banco de dados podem ser incorporados para categorização em MQL5. Analisaremos brevemente como os conceitos de esquema de banco de dados podem ser combinados com a teoria da categoria na identificação de informações de texto (string) relevantes para a negociação. O foco será em eventos de calendário.

Avaliando o desempenho futuro com intervalos de confiança
Neste artigo, vamos explorar o uso do bootstrapping como um meio de avaliar a eficácia futura de uma estratégia automatizada.

Do básico ao intermediário: União (I)
Neste artigo começaremos a ver o que seria uma união. Aqui faremos a lição de casa, experimentando as primeiras construções em que uma união poderia ser utilizada. Apesar de tudo, o que será visto aqui, é apenas a parte básica de todo um conjunto de conceitos e informações que ainda serão melhor exploradas em artigos futuros. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

DoEasy. Controles (Parte 26): Apurando o objeto WinForms "ToolTip" e desenvolvendo o "ProgressBar".
Neste artigo vamos completar o desenvolvimento do controle ToolTip e começar a desenvolver o objeto WinForms ProgressBar. Ao trabalharmos nesses objetos, desenvolveremos uma funcionalidade versátil para animar os controles e seus componentes.

Simulação de mercado (Parte 13): Sockets (VII)
Quando você desenvolve algo, seja no xlwings, ou qualquer outro pacote que nos permita ler e escrever diretamente no Excel. Você na verdade deve notar que todos os programas, funções ou procedimentos. Executam e logo finalizam a sua tarefa. Eles não ficam ali, dentro de um loop. E por mais que você tente fazer as coisas de uma forma diferente.

Reimaginando Estratégias Clássicas em Python: MA Crossovers
Neste artigo, revisitamos a clássica estratégia de cruzamento de médias móveis para avaliar sua eficácia atual. Dado o tempo desde sua criação, exploramos os possíveis aprimoramentos que a IA pode trazer a essa estratégia de negociação tradicional. Ao incorporar técnicas de IA, nosso objetivo é aproveitar as capacidades preditivas avançadas para otimizar pontos de entrada e saída de operações, adaptar-se a condições de mercado variáveis e melhorar o desempenho geral em comparação com abordagens convencionais.

Como desenvolver um sistema de negociação baseado no indicador Oscilador Acelerador
Um novo artigo da nossa série sobre como criar sistemas de negociação simples pelos indicadores técnicos mais populares. Nós aprenderemos sobre o indicador Oscilador Acelerador e aprenderemos como desenvolver um sistema de negociação usando-o.

Modelos de regressão da biblioteca Scikit-learn e sua exportação para ONNX
Neste artigo, exploraremos a aplicação de modelos de regressão do pacote Scikit-learn, tentaremos convertê-los para o formato ONNX e usaremos os modelos resultantes em programas MQL5. Além disso, compararemos a precisão dos modelos originais com suas versões ONNX para ambas as precisões float e double. Além disso, examinaremos a representação ONNX dos modelos de regressão, com o objetivo de fornecer uma melhor compreensão de sua estrutura interna e princípios operacionais.

Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)
Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.

Abordagem quantitativa na gestão de riscos: aplicação do modelo VaR para otimização de portfólio multimoeda com Python e MetaTrader 5
Neste artigo, revelamos o potencial do modelo Value at Risk (VaR) para a otimização de portfólios multimoeda. Utilizando o Python e as funcionalidades do MetaTrader 5, demonstramos como implementar a análise VaR para uma distribuição eficiente de capital e gerenciamento de posições. Desde os fundamentos teóricos até a implementação prática, o artigo abrange todos os aspectos da aplicação de um dos sistemas mais robustos de cálculo de risco — o VaR — no trading algorítmico.

DoEasy. Controles (Parte 21): O controle SplitContainer. Separador de painéis
Neste artigo, criaremos uma classe do objeto separador de painéis auxiliar para o controle SplitContainer.

EA de grid-hedge modificado em MQL5 (Parte II): Criando um EA de grade simples
O artigo aborda a estratégia clássica de grade, descrevendo detalhadamente sua automação com um EA em MQL5 e analisando os resultados iniciais dos testes históricos. Também enfatiza a necessidade de manter posições por um longo período e considera a possibilidade de otimização de parâmetros-chave (como distância, take-profit e tamanhos de lotes) em futuras partes. O objetivo desta série de artigos é aumentar a eficiência da estratégia de negociação e sua adaptabilidade a diferentes condições de mercado.

Negociação algorítmica com MetaTrader 5 e R para iniciantes
Neste artigo, vamos combinar análise financeira com negociação algorítmica, além de ver como integrar R e MetaTrader 5. Este artigo é um guia para unir a flexibilidade analítica do R com as enormes possibilidades de negociação do MetaTrader 5.

Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica
No artigo anterior, apresentamos o método DIAYN, que oferece um algoritmo para aprender uma variedade de habilidades. O uso das habilidades adquiridas pode ser usado para diversas tarefas. Mas essas habilidades podem ser bastante imprevisíveis, o que pode dificultar seu uso. Neste artigo, veremos um algoritmo para ensinar habilidades previsíveis.

Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)
Neste artigo é analisado um algoritmo interessante chamado de gotas de água inteligentes (IWD), inspirado na natureza inanimada, que simula o processo de formação do leito de um rio. As ideias desse algoritmo permitiram melhorar significativamente o líder anterior da classificação, o SDS, e o novo líder (SDSm modificado), como de costume, pode ser encontrado no arquivo do artigo.

Redes neurais de maneira fácil (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Apresentamos um algoritmo relativamente novo, o Stochastic Marginal Actor-Critic (SMAC), que permite a construção de políticas de variáveis latentes no contexto da maximização da entropia.

Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures
Neste artigo, vamos desenvolver um modelo de floresta aleatória usando Python. Vamos treinar esse modelo e salvá-lo como um pipeline ONNX, já incluindo etapas de pré-processamento de dados. Depois, esse modelo será aplicado diretamente no terminal do MetaTrader 5.

Gerenciador de riscos para trading algorítmico
Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.

Integração MQL5: Python
Python é uma linguagem de programação bem conhecida e popular, com muitos recursos, especialmente nas áreas de finanças, ciência de dados, Inteligência Artificial e Aprendizado de Máquina. Python é uma ferramenta poderosa que também pode ser útil no trading. O MQL5 nos permite usar essa poderosa linguagem como uma integração para alcançar nossos objetivos de forma eficaz. Neste artigo, compartilharemos como podemos usar Python como uma integração no MQL5, depois de aprender algumas informações básicas sobre Python.

Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo
Nesta série, continuamos a desvendar os segredos da programação. No novo artigo, vamos estudar as bases das estruturas, classes e funções de tempo e adquirir novas habilidades para programação eficiente. Este guia pode ser útil não apenas para iniciantes, mas também para desenvolvedores experientes, pois simplifica conceitos complexos, fornecendo informações valiosas para dominar o MQL5. Continue aprendendo coisas novas, aperfeiçoe suas habilidades de programação e domine o mundo da negociação algorítmica.

DoEasy. Controles (Parte 14): Novo algoritmo para nomear elementos gráficos. Continuando o trabalho no objeto WinForms TabControl
Neste artigo, elaboraremos um novo algoritmo para nomear todos os elementos gráficos que permitem criar gráficos personalizados, e continuaremos desenvolvendo o objeto WinForms TabControl.

Algoritmos de otimização populacionais: Busca harmônica (Harmony Search, HS)
Hoje, estudaremos e testaremos o algoritmo de otimização mais avançado, a busca harmônica (HS), que é inspirada no processo de procura da harmonia sonora perfeita. Então, qual algoritmo é agora o líder em nossa classificação?

Soluções simples para trabalhar com indicadores
Neste artigo, explicarei como criar um painel simples para ajustar as configurações de um indicador diretamente no gráfico e quais modificações são necessárias no indicador para integrar esse painel. O artigo é voltado exclusivamente para quem está começando a aprender a linguagem MQL5.

Validação cruzada e noções básicas de inferência causal em modelos CatBoost, exportação para o formato ONNX
Este artigo propõe um método autoral para a criação de robôs usando aprendizado de máquina.

Desenvolvendo um sistema de Replay (Parte 34): Sistema de Ordens (III)
Vamos neste artigo concluir a primeira fase da construção. Será algo relativamente rápido, mas explicarei detalhes que podem não ter sido comentados no passado. Mas ainda assim aqui explicarei algumas coisas que muitos não entender por que são como são. Um destes casos é o Mouse. Você sabe o motivo de ter que pressionar a tecla Shift ou Ctrl no teclado ?!?!

Desenvolvendo um sistema de Replay (Parte 39): Pavimentando o Terreno (III)
Antes de começarmos a segunda fase de desenvolvimento, é preciso reforçar algumas ideias. Então você sabe como forçar o MQL5 a fazer o que é preciso ser feito ?!?! Já tentou ir além do que a documentação informar ?!?! Se não. Se prepare. Pois irei começar a fazer coisas muito além do que grande parte faz normalmente.

Desenvolvendo um sistema de Replay (Parte 56): Adequando os Módulos
Apesar dos módulos estarem se comunicando de maneira adequada, existe uma falha quando é tentado usar o indicador de mouse no serviço de replay. Precisamos corrigir isto agora, antes de dar o próximo passo. Além disto, havia uma falha que finalmente foi devidamente corrigida no código do indicador de mouse. Então esta versão finalmente se tornou estável, e devidamente finalizada.

Implementando uma Estratégia de Negociação com Bandas de Bollinger usando MQL5: Um Guia Passo a Passo
Um guia passo a passo para implementar um algoritmo de negociação automatizado em MQL5 baseado na estratégia de Bandas de Bollinger. Um tutorial detalhado sobre a criação de um Expert Advisor que pode ser útil para traders.

Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado
Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.

Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)
A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5
O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.

Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)
Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.