Artigos sobre como programar e utilizar robôs de negociação na linguagem MQL5

icon

Os experts que os desenvolvedores criam para o MetaTrader realizam uma grande variedade de tarefas. Entre elas estão o monitoramento de muitos instrumentos financeiros 24h por dia, a cópia de operações, a criação e o envio de relatórios, a análise de notícias e até mesmo o acesso dos traders à sua própria interface gráfica personalizada.

Os artigos podem abordar técnicas de programação, ideias matemáticas para processamento de dados, dicas para criar e encomendar robôs de negociação.

Novo artigo
recentes | melhores
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 02): Mapas de Kohonen

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 02): Mapas de Kohonen

Esta série de artigos propõe que o Assistente MQL5 deve ser um pilar para os traders. Por quê? Porque o trader não economiza apenas o tempo desenvolvendo suas novas ideias com o Assistente MQL5, mas reduz bastante os erros de desenvolvimento de código duplicado; ele está finalmente preparado para canalizar sua energia nas poucas áreas críticas de sua filosofia de negociação.
preview
Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Continuamos nossa exploração dos algoritmos de aprendizado por reforço na resolução de problemas em espaços de ação contínua. Neste artigo, apresento o algoritmo Soft Actor-Critic (SAC). A principal vantagem do SAC está em sua capacidade de encontrar políticas ótimas que não apenas maximizam a recompensa esperada, mas também têm a máxima entropia (diversidade) de ações.
preview
Padrões de projeto no MQL5 (Parte 2): Padrões estruturais

Padrões de projeto no MQL5 (Parte 2): Padrões estruturais

Neste artigo, continuaremos a estudar os padrões de projeto que permitem aos desenvolvedores criar aplicativos expansíveis e confiáveis não apenas no MQL5, mas também em outras linguagens de programação. Desta vez, falaremos sobre outro tipo: modelos estruturais. Aprenderemos a projetar sistemas usando as classes disponíveis para formar estruturas maiores.
preview
Desenvolvendo um sistema de Replay (Parte 30): Projeto Expert Advisor - Classe C_Mouse (IV)

Desenvolvendo um sistema de Replay (Parte 30): Projeto Expert Advisor - Classe C_Mouse (IV)

Aqui demonstrarei uma técnica que pode lhe ajudar muito, em vários momentos durante a sua vida como programador. Diferente do que muitos dizem, não é a plataforma que é limitada, mas sim o conhecimento do individuo que diz que tal coisa. O que será explicado aqui, mostrar que com um pouco de bom senso e criatividade, você pode tornar a plataforma MetaTrader 5 muito mais interessante e versátil. E sem precisar de fato criar programas malucos ou coisas do estilo. Você pode criar um código simples, porém seguro e confiável. Usando de perspicácia, domar o código a fim de modificar algo já existente, sem se quer remover ou adicionar uma única linha se quer, no código original.
preview
Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

No artigo anterior, nós exploramos o método DDPG, projetado para treinar modelos em espaços de ação contínua. No entanto, como outros métodos de aprendizado Q, ele está sujeito ao problema da sobreavaliação dos valores da função Q. Esse problema geralmente leva eventualmente ao treinamento de um agente com uma estratégia não otimizada. Neste artigo, examinaremos algumas abordagens para superar o problema mencionado.
preview
Padrões de projeto no MQL5 (Parte I): Padrões criacionais (creational patterns)

Padrões de projeto no MQL5 (Parte I): Padrões criacionais (creational patterns)

Existem métodos que podem ser usados para resolver problemas típicos. Depois de entender como usar esses métodos, você pode então escrever programas de maneira prática e aplicar o conceito DRY ("Don't Repeat Yourself" - "Não se Repita"). Neste contexto, os padrões de projeto são extremamente úteis, pois apresentam soluções para problemas bem descritos e recorrentes.
preview
Teoria das Categorias em MQL5 (Parte 8): Monoides

Teoria das Categorias em MQL5 (Parte 8): Monoides

Esse artigo continua a série sobre a implementação da teoria da categoria em MQL5. Aqui, apresentamos os monoides como um domínio (conjunto) que distingue a teoria da categoria de outros métodos de classificação de dados ao incorporar regras e um elemento de equivalência.
preview
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
preview
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.
preview
Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.
preview
Redes neurais de maneira fácil (Parte 45): Ensinando habilidades para investigar estados

Redes neurais de maneira fácil (Parte 45): Ensinando habilidades para investigar estados

Aprender habilidades úteis sem uma função de recompensa explícita é um dos principais desafios do aprendizado por reforço hierárquico. Anteriormente, já nos familiarizamos com dois algoritmos para resolver esse problema. Mas a questão da completa exploração do ambiente ainda está em aberto. Neste artigo, é apresentada uma abordagem diferente para o treinamento de habilidades, cujo uso depende diretamente do estado atual do sistema.
preview
Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução

Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução

A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.
preview
Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Nos últimos artigos, exploramos várias formas de usar o método Decision Transformer. Ele permite analisar não só o estado atual, mas também a trajetória de estados anteriores e as ações realizadas neles. Neste artigo, proponho que você conheça uma forma de usar este método em modelos hierárquicos.
preview
Como desenvolver um sistema de negociação baseado no indicador Bull's Power

Como desenvolver um sistema de negociação baseado no indicador Bull's Power

Bem-vindo a um novo artigo em nossa série sobre como desenvolver um sistema de negociação com base nos indicadores técnicos mais populares, aqui está um novo artigo sobre como aprender a desenvolver um sistema de negociação pelo indicador técnico Bull's Power.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
preview
Análise quantitativa no MQL5: implementando um algoritmo promissor

Análise quantitativa no MQL5: implementando um algoritmo promissor

Vamos explorar o que é a análise quantitativa, como os grandes players a utilizam e criar um dos algoritmos de análise quantitativa na linguagem MQL5.
preview
Anotação de dados na análise de série temporal (Parte 1): Criação de um conjunto de dados com rótulos de tendência usando um gráfico EA

Anotação de dados na análise de série temporal (Parte 1): Criação de um conjunto de dados com rótulos de tendência usando um gráfico EA

Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
preview
Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um Guia Passo a Passo sobre a Estratégia de Quebra de Estrutura (BoS)

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Quebra de Estrutura (BoS). Informações detalhadas sobre todos os aspectos da criação de um consultor em MQL5 e testando-o no MetaTrader 5 — desde a análise de suporte e resistência de preços até a gestão de riscos.
preview
Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Ao começar a desenvolver um EA multimoeda, já alcançamos alguns resultados e realizamos várias iterações de melhoria do código. No entanto, nosso EA não podia trabalhar com ordens pendentes e retomar o trabalho após reiniciar o terminal. Vamos adicionar essas funcionalidades.
preview
Como desenvolver um sistema de negociação baseado no indicador Bear's Power

Como desenvolver um sistema de negociação baseado no indicador Bear's Power

Bem-vindo a um novo artigo em nossa série sobre como desenvolver um sistema de negociação com base nos indicadores técnicos mais populares, aqui está um novo artigo sobre como aprender a desenvolver um sistema de negociação pelo indicador técnico Bear's Power.
preview
Trailing-stop no trading

Trailing-stop no trading

Neste artigo, vamos analisar o uso do trailing-stop no trading, sua utilidade e praticidade, e como pode ser utilizado. A praticidade do trailing-stop depende muito da volatilidade do preço e da escolha do nível de stop-loss. Para a configuração do stop-loss, podem ser utilizados vários métodos.
preview
Negociação automatizada em grade usando ordens pendentes de stop na Bolsa de Moscou (MOEX)

Negociação automatizada em grade usando ordens pendentes de stop na Bolsa de Moscou (MOEX)

Uso da abordagem de negociação em grade com ordens pendentes de stop em um Expert Advisor usando a linguagem de estratégias de negociação MQL5 para o MetaTrader 5 na Bolsa de Valores de Moscou (MOEX). Ao negociar no mercado, uma das estratégias mais simples é uma grade de ordens projetada para "capturar" o preço de mercado.
preview
Redes neurais de maneira fácil (Parte 30): Algoritmos genéticos

Redes neurais de maneira fácil (Parte 30): Algoritmos genéticos

Hoje quero apresentar-lhes um método de aprendizado um pouco diferente. Pode-se dizer que é emprestado da teoria da evolução de Darwin. É provavelmente menos controlável do que os métodos discutidos anteriormente. Mas, mesmo assim, permite também treinar modelos indiferenciados.
preview
Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Neste artigo, continuamos a estudar os fundamentos da programação em MQL5. Vamos abordar arrays, funções personalizadas, pré-processadores e manipulação de eventos. Para maior clareza, cada passo de todas as explicações será acompanhado por código. Esta série de artigos estabelece a base para o estudo do MQL5, com ênfase na explicação de cada linha de código.
preview
Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento

Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento

No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.
preview
Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica

Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica

No artigo anterior, apresentamos o método DIAYN, que oferece um algoritmo para aprender uma variedade de habilidades. O uso das habilidades adquiridas pode ser usado para diversas tarefas. Mas essas habilidades podem ser bastante imprevisíveis, o que pode dificultar seu uso. Neste artigo, veremos um algoritmo para ensinar habilidades previsíveis.
preview
Redes neurais de maneira fácil (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Redes neurais de maneira fácil (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Apresentamos um algoritmo relativamente novo, o Stochastic Marginal Actor-Critic (SMAC), que permite a construção de políticas de variáveis latentes no contexto da maximização da entropia.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Recebi comentários de vários colegas traders sobre como usar o Expert Advisor multimoedas que estou analisando com corretoras que usam prefixos e/ou sufixos com nomes de símbolos, bem como sobre como implementar fusos horários de negociação ou sessões de negociação no Expert Advisor.
preview
Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Ganhe uma Vantagem sobre Qualquer Mercado (Parte II): Previsão de Indicadores Técnicos

Você sabia que podemos obter mais precisão ao prever certos indicadores técnicos do que ao prever o preço subjacente de um símbolo negociado? Junte-se a nós para explorar como aproveitar essa percepção para melhores estratégias de negociação
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 03): Entropia de Shannon

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 03): Entropia de Shannon

O trader de hoje é um filomata que está quase sempre procurando novas ideias, experimentando-as, escolhendo modificá-las ou descartá-las; um processo exploratório que deve custar uma quantidade razoável de diligência. Esta série de artigos proporá que o assistente MQL5 deve ser um esteio para os traders.
preview
Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)

Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)

Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.
preview
Como desenvolver um sistema de negociação baseado no indicador Oscilador Acelerador

Como desenvolver um sistema de negociação baseado no indicador Oscilador Acelerador

Um novo artigo da nossa série sobre como criar sistemas de negociação simples pelos indicadores técnicos mais populares. Nós aprenderemos sobre o indicador Oscilador Acelerador e aprenderemos como desenvolver um sistema de negociação usando-o.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Neste artigo, por EA multimoeda, entendemos um robô investidor ou um robô de negociação que pode negociar (abrir/fechar ordens, gerenciar ordens como trailing-stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, o Parabolic SAR ou iSAR, em vários timeframes, começando com PERIOD_M15 e terminando com PERIOD_D1.
preview
Redes neurais de maneira fácil (Parte 54): usando o codificador aleatório para exploração eficiente (RE3)

Redes neurais de maneira fácil (Parte 54): usando o codificador aleatório para exploração eficiente (RE3)

A cada vez que consideramos métodos de aprendizado por reforço, nos deparamos com a questão da exploração eficiente do ambiente. A solução deste problema frequentemente leva à complexificação do algoritmo e ao treinamento de modelos adicionais. Neste artigo, vamos considerar uma abordagem alternativa para resolver esse problema.
preview
Padrões de projeto no MQL5 (Parte 4): Padrões comportamentais 2

Padrões de projeto no MQL5 (Parte 4): Padrões comportamentais 2

Com este artigo concluímos a série sobre padrões de projeto na área de software. Já mencionei que existem três tipos de padrões de projeto: criacionais, estruturais e comportamentais. Finalizaremos os padrões comportamentais restantes, que ajudarão a definir a maneira de interação entre objetos, de modo a tornar nosso código mais limpo.
preview
Teoria das Categorias em MQL5 (Parte 22): Outra Perspectiva sobre Médias Móveis

Teoria das Categorias em MQL5 (Parte 22): Outra Perspectiva sobre Médias Móveis

Neste artigo, tentaremos simplificar a descrição dos conceitos discutidos nesta série, focando apenas em um indicador, o mais comum e, provavelmente, o mais fácil de entender. Estamos falando da média móvel. Também examinaremos o significado e as possíveis aplicações das transformações naturais verticais.
preview
Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

No último artigo, elaboramos uma ferramenta para criar e editar a arquitetura de redes neurais. E hoje quero convidá-lo a continuar trabalhando nela, para torná-la mais amigável. De certa forma, ao fazer isso, estamos nos afastando um pouco do nosso tópico. Mas convenhamos que a organização do espaço de trabalho desempenha um papel importante na obtenção do resultado.
preview
Teoria das Categorias em MQL5 (Parte 17): funtores e monoides

Teoria das Categorias em MQL5 (Parte 17): funtores e monoides

Este é o último artigo da série dedicada a funtores. Nele, reconsideramos monoides como uma categoria. Os monoides, que já apresentamos nesta série, são usados aqui para ajudar na definição do tamanho da posição juntamente com perceptrons multicamadas.
preview
Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.
preview
Anotação de dados na análise de série temporal (Parte 2): Criação de conjuntos de dados com rótulos de tendência usando Python

Anotação de dados na análise de série temporal (Parte 2): Criação de conjuntos de dados com rótulos de tendência usando Python

Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!