MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス

DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス

本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。
preview
DoEasy - コントロール(第8部):カテゴリ(GroupBoxおよびCheckBoxのコントロール)による基本WinFormsオブジェクト

DoEasy - コントロール(第8部):カテゴリ(GroupBoxおよびCheckBoxのコントロール)による基本WinFormsオブジェクト

この記事では、「GroupBox」および「CheckBox」WinFormsオブジェクトの作成、およびWinFormsオブジェクトカテゴリの基本オブジェクトの開発について検討します。作成されたすべてのオブジェクトはまだ静的で、マウスと対話することはできません。
preview
自動で動くEAを作る(第14回):自動化(VI)

自動で動くEAを作る(第14回):自動化(VI)

今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。
ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法
ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法

ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法

このビデオコースでは、MetaTrader 5をダウンロード、インストールして自動売買のために設定する方法を学びます。また、チャートの設定や自動売買のオプションの調整方法についても学びます。最初のバックテストをおこないます。このコースの終わりには、画面の前に座らなくても、24時間365日自動的に取引できるエキスパートアドバイザー(EA)をインポートする方法が分かります。
preview
初心者からプロまでMQL5をマスターする(第2回):基本的なデータ型と変数の使用

初心者からプロまでMQL5をマスターする(第2回):基本的なデータ型と変数の使用

初心者向け連載の続きです。この記事では、定数や変数を作成する方法、日付や色、その他の便利なデータを書き込む方法を見ていきます。曜日や線のスタイル(実線、点線など)を列挙する方法も学びます。変数と式はプログラミングの基本です。これらは99%のプログラムに間違いなく存在するので、理解することは非常に重要です。したがって、この記事はとてもプログラミング初心者の役に立つでしょう。必要なプログラミング知識レベル:前回の記事(冒頭のリンク参照)の範囲内で、ごく基本的なものです。
preview
DoEasyライブラリの時系列(第55部): 指標コレクションクラス

DoEasyライブラリの時系列(第55部): 指標コレクションクラス

本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。
preview
MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)

MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)

MQL5で移動可能なGUIを作成するための詳細なガイドで、取引戦略やユーティリティでの動的なデータ表現の可能性を引き出しましょう。オブジェクト指向プログラミングの基本原理を理解し、同じチャート上に単一または複数の移動可能なGUIを簡単かつ効率的に設計実装する方法を発見してください。
preview
ニューラルネットワークが簡単に(第53回):報酬の分解

ニューラルネットワークが簡単に(第53回):報酬の分解

報酬関数を正しく選択することの重要性については、すでに何度かお話ししました。報酬関数は、個々の行動に報酬またはペナルティを追加することでエージェントの望ましい行動を刺激するために使用されます。しかし、エージェントによる信号の解読については未解決のままです。この記事では、訓練されたエージェントに個々のシグナルを送信するという観点からの報酬分解について説明します。
preview
データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。
preview
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
preview
EAを用いたリスクとキャピタルの管理

EAを用いたリスクとキャピタルの管理

この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
preview
母集団最適化アルゴリズム:人工蜂コロニー(ABC)

母集団最適化アルゴリズム:人工蜂コロニー(ABC)

今回は、人工蜂コロニーアルゴリズムを研究し、機能空間を研究する新しい原理で知識を補います。今回は、古典アルゴリズムについて、私の解釈を紹介します。
preview
一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。
preview
PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装

PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装

PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。
preview
OBVによる取引システムの設計方法を学ぶ

OBVによる取引システムの設計方法を学ぶ

今回は、初心者向けのシリーズとして、人気のあるいくつかの指標をもとに取引システムを設計する方法について、新しい記事をお届けします。今回は、新しい指標であるOBV (On Balance Volume)を学び、その使い方とそれに基づいた取引システムの設計を学びます。
DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス

DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス

本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。
preview
DoEasy - コントロール(第2部):CPanelクラスでの作業

DoEasy - コントロール(第2部):CPanelクラスでの作業

今回は、グラフィック要素の処理に関連するエラーを取り除き、CPanelコントロールの開発を継続する予定です。特に、すべてのパネルテキストオブジェクトにデフォルトで使用されるフォントのパラメータを設定するメソッドを実装します。
preview
MQL5の統合:Python

MQL5の統合:Python

Pythonは、特に金融、データサイエンス、人工知能、機械学習の分野で多くの特徴を持つ、よく知られた人気のプログラミング言語です。また、Pythonは取引にも有効な強力なツールです。MQL5では、この強力な言語を統合して使用することで、目的を効果的に達成することができます。本記事では、Pythonの基本的な情報を学んだ後、MQL5でPythonを統合して使用する方法を紹介します。
preview
取引におけるトレーリングストップ

取引におけるトレーリングストップ

この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
preview
MQL5の圏論(第2回)

MQL5の圏論(第2回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

今日は、発注システムを次のレベルに引き上げます。ただしその前に、いくつかの問題を解決する必要があります。ここで、どのように働きたいか、取引日に何をするかに関連するいくつかの質問があります。
preview
知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式

知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式

ニュートン多項式は、数点の集合から二次方程式を作るもので、時系列を見るには古風だが興味深いアプローチです。この記事では、このアプローチをトレーダーがどのような面で役立てることができるかを探るとともに、その限界についても触れてみたいと思います。
preview
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第2部):出来高指標とビルウィリアムズの指標

エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第2部):出来高指標とビルウィリアムズの指標

この記事では、標準的な出来高指標とビルウィリアムズ指標のカテゴリについて見ていきます。パラメータの宣言と設定、指標の初期化と解除、EAの指標バッファからのデータとシグナルの受信など、EAで指標を使用するためのすぐに使えるテンプレートを作成します。
preview
MQL5の圏論(第20回):セルフアテンションとTransformerへの回り道

MQL5の圏論(第20回):セルフアテンションとTransformerへの回り道

ちょっと寄り道して、chatGPTのアルゴリズムの一部について考えてみたいとおもいます。自然変換から借用した類似点や概念はあるのでしょうか。シグナルクラス形式のコードを用いて、これらの疑問やその他の質問に楽しく答えようと思います。
preview
DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。
preview
一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?

一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?

今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。
preview
MQL5の圏論(第17回):関手とモノイド

MQL5の圏論(第17回):関手とモノイド

関手を題材にしたシリーズの最終回となる今回は、圏としてのモノイドを再考します。この連載ですでに紹介したモノイドは、多層パーセプトロンとともに、ポジションサイジングの補助に使われます。
preview
ニューラルネットワークの実験(第1回):幾何学の再検討

ニューラルネットワークの実験(第1回):幾何学の再検討

この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト
DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト

DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト

本稿からは、ライブラリでのグラフィックの使用に関する新しい大きなセクションを始めます。本稿では、マウスステータスオブジェクト、すべてのグラフィック要素の基本オブジェクト、およびライブラリのグラフィック要素のフォームオブジェクトのクラスを作成します。
preview
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
preview
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
preview
DoEasy-コントロール(第17部):オブジェクトの非表示部分の切り取り、補助矢印ボタンのWinFormsオブジェクト

DoEasy-コントロール(第17部):オブジェクトの非表示部分の切り取り、補助矢印ボタンのWinFormsオブジェクト

この記事では、コンテナの外側にあるオブジェクトセクションを非表示にする機能を作成します。また、他のWinFormsオブジェクトの一部として使用する補助矢印ボタンオブジェクトを作成します。
preview
知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。
preview
データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測

回帰型ニューラルネットワーク(Recurrent Neural Network: RNN)は、過去の情報を活用して将来の出来事を予測することに優れています。その驚くべき予測能力は、さまざまな領域で応用され、大きな成功を収めています。この記事では、外為市場のトレンドを予測するためにRNNモデルを導入し、外為取引における予測精度を高める可能性を示します。
preview
移動エントロピーを用いた時系列の因果分析

移動エントロピーを用いた時系列の因果分析

この記事では、統計的因果関係をどのように活用して予測変数を特定できるかを解説します。因果性と移動エントロピーの関連性を探り、2つの変数間で情報がどの方向に伝達されているかを検出するためのMQL5コードを紹介します。
preview
一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。
preview
ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

強化学習アルゴリズムの研究を続けます。これまで検討してきたすべてのアルゴリズムでは、あるシステム状態から別の状態への遷移ごとに、エージェントがそれぞれの行動を評価できるようにするための報酬方策を作成する必要がありました。しかし、この方法はかなり人工的なものです。実際には、行動と報酬の間には、ある程度の時間差があります。今回は、行動から報酬までの様々な時間の遅れを扱うことができるモデル訓練アルゴリズムに触れてみましょう。
preview
MQL5の圏論(第15回):関手とグラフ

MQL5の圏論(第15回):関手とグラフ

この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
preview
MQL5入門(第4部):構造体、クラス、時間関数をマスターする

MQL5入門(第4部):構造体、クラス、時間関数をマスターする

最新記事でMQL5プログラミングの秘密を解き明かしましょう。構造体、クラス、時間関数の本質に迫り、コーディングの旅に力を与えます。初心者から経験豊富な開発者まで、個のガイドは、MQL5をマスターするための貴重な洞察を提供し、複雑な概念を簡素化します。プログラミングのスキルを高め、アルゴリズム取引の世界で一歩先を行きましょう。
DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能
DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能

DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能

現在、ライブラリでは、一部のパラメータの削除や変更など、クライアントターミナルのチャート上の標準のグラフィカルオブジェクトを追跡できます。現時点では、カスタムプログラムから標準グラフィカルオブジェクトを作成する機能はありません。