チャイキンオシレーター(Chaikin Oscillator)による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事にようこそ。この新しい記事を通して、チャイキンオシレーター指標による取引システムを設計する方法を学びます。
MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第1回):パネルの製作
この記事では、MetaQuotes Language 5 (MQL5)を使用して、グラフィカルユーザーインターフェイス(GUI)パネルを作成し、実装するための基本的な手順について説明します。カスタムユーティリティパネルは、一般的なタスクを簡素化し、重要な取引情報を可視化することで、取引におけるユーザーのインタラクションを向上させます。カスタムパネルを作成することで、トレーダーはワークフローを合理化し、取引操作の時間を節約することができます。

Meta Trader5がもたらす新たな機会
Meta Trader4は世界中のトレーダーから好評を博し、これ以上に望むものはないように思われていました。高い処理速度、安定性、インディケータ記述の広大な可能性、エキスパートアドバイザー、情報提供型トレーディングシステム、そして100以上の異なるブローカーから選択できることにより-このターミナルは他に類を見ないほどに優れたものでした。しかし時は流れ、今や、Meta Trader4かMeta Trader5かの選択を迫られる時代となりました。本稿では、時代が求めるこの第5世代ターミナルの主な違いについて述べます。
アリゲーターによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法についての連載は今回で完結します。アリゲーター指標を基にした取引システムの作り方を学びます。
MQL5における行列とベクトル:活性化関数
ここでは、機械学習の一側面である活性化関数についてのみ説明します。人工ニューラルネットワークでは、ニューロンの活性化関数は、入力シグナルまたは入力シグナルのセットの値に基づいて出力シグナル値を計算します。その内幕に迫ります。
適応型インジケーター
この記事では、適応型インジケーターを作成するためのいくつかの可能なアプローチを検討します。適応型インジケーターは、入力信号と出力信号の値の間のフィードバックの存在によって特徴付けられます。このフィードバックにより、インジケーターは金融時系列値の最適な処理に個別に適応できるようになります。

DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新
本稿では、チャートオブジェクトの機能を拡張し、チャートのナビゲーション、スクリーンショットの作成、チャートの保存と適用を行います。また、チャートオブジェクトのコレクション、それらのウィンドウ、およびその中の指標の自動更新を実装します。
スマートマネーコンセプト(オーダーブロック)とフィボナッチ指標を組み合わせた最適な取引エントリー方法
SMC(オーダーブロック)は、機関投資家トレーダーが大規模なな売買を開始する主要領域です。価格が大きく動いた後、フィボナッチは直近のスイングハイからスイングローへの潜在的なリトレースメントを特定し、最適な取引エントリーを特定するのに役立ちます。
単一チャート上の複数インジケータ(第02部): 実験1
前回の「単一チャート上の複数インジケータ」稿では、単一のチャートで複数のインジケータを使用する方法の概念と基本を説明しました。この記事では、ソースコードを提供して詳しく説明します。
Bulls Powerによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。

DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
プロのプログラマーからのヒント(第III部): ロギングSeqログ収集および分析システムへの接続
エキスパートログに出力されるメッセージを統合および構造化するためのLoggerクラスの実装。Seqログ収集および分析システムへの接続。オンラインでのログメッセージの監視。
取引トランザクション:リクエストとレスポンスの構造体、説明、ロギング
この記事では、取引リクエストの構造体、すなわち、リクエストの作成、サーバーに送信する前の事前検証、取引リクエストに対するサーバーの応答、および取引トランザクションの構造体の取り扱いについて検討します。取引注文をサーバーに送信するためのシンプルで便利な関数を作成し、すべての議論された内容に基づいて、取引トランザクションを通知するEAを作成します。

モメンタムによるトレーディングシステムの設計方法を学ぶ
前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける
複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。

外為市場は予測可能なのか?自分独自のトレーディング戦略を作成する方法は?
Forex を始める人は皆こういった疑問に答えようとします。しかし、だれもがその答えを見つけるとは限りません。何年も賢明に働き、研究したとしても、です。本項のその他多くの疑問と共に、私は個人的にこの質問に答えてきました。そういう答えの結果として、効率的なトレーディング戦略の作成する方法が決まったのです。

モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。

ニューラルネットワークが簡単に(第32部):分散型Q学習
この連載で前回Q学習法を紹介しました。この手法は、各行動の報酬を平均化するものです。2017年には、報酬分布関数を研究する際に、より大きな成果を示す2つの研究が発表されました。そのような技術を使って、私たちの問題を解決する可能性を考えてみましょう。

MQL5でICQを用いたExpert Advisorの連携
本稿は、Expert Advisor と ICQ ユーザー間の情報交換について述べていきます。いくつかの例を提供します。ICQ クライアントを使用し、携帯電話やPDAでクライアント端末から遠隔でトレーディング情報を受け取りたい方には興味を引かれる資料を提供することとなるでしょう。

ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ
人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶ本連載の新しい記事では、ゲータ―オシレーターテクニカル指標を取り上げ、簡単な戦略を通じて取引システムを作成する方法について学びます。

Rebuyのアルゴリズム:効率を上げるための数学モデル
この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました
数人のトレーダー仲間から、プレフィックスやサフィックスを持つ銘柄名を持つブローカーでこの多通貨EAを使用する方法、およびこの多通貨EAで取引タイムゾーンや取引タイムセッションを実装する方法についてメールやコメントをいただきました。

DoEasyライブラリのグラフィックス(第83部): 抽象標準グラフィカルオブジェクトのクラス
本稿では、抽象グラフィカルオブジェクトのクラスを作成します。このオブジェクトは、標準のグラフィカルオブジェクトのクラスを作成するための基礎として機能します。グラフィカルオブジェクトには複数のプロパティがあるため、抽象グラフィカルオブジェクトクラスを実際に作成する前に、多くの準備作業が必要です。この作業には、ライブラリ列挙型のプロパティの設定が含まれます。

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)
今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。

MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する
この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。

ニュース取引が簡単に(第1回):データベースの作成
ニュース取引は複雑で圧倒されるかもしれませんが、この記事ではニュースデータを入手する手順を説明し、さらに、MQL5経済指標カレンダーとその特徴についても学びます。

ニューラルネットワークが簡単に(第33部):分散型Q学習における分位点回帰
分散型Q学習の研究を続けます。今日は、この方法を反対側から見てみましょう。価格予測問題を解決するために、分位点回帰を利用する可能性を検討します。

トレーディング初心者の10の「エラー」?
本稿は既存の条件-、従来の『アラート』のみならず、またあまりそればかりでなく、価格、現在の各オーダーの利益/損失値、に従い、相互関連するオーダーの一連のオープンやクローズとしてのトレーディングシステムを構築する方法を立証します。ここではそのような基礎的なトレーディングシステムの典型的作成法を提供します。

ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成
この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。

MQL5の圏論(第6回):単射的引き戻しと全射的押し出し
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測
外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。

リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。

データサイエンスと機械学習(第15回):SVM、すべてのトレーダーのツールボックスの必須ツール
取引の未来を形作るサポートベクターマシン(SVM)の不可欠な役割をご覧ください。この包括的なガイドブックでは、SVMがどのように取引戦略を向上させ、意思決定を強化し、金融市場における新たな機会を解き放つことができるかを探求しています。実際のアプリケーション、ステップバイステップのチュートリアル、専門家の洞察でSVMの世界に飛び込みましょう。現代の複雑な取引をナビゲートするのに不可欠なツールを装備してください。SVMはすべてのトレーダーのツールボックスの必需品です。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。

DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。

MQL5の圏論(第16回):多層パーセプトロンと関手
本連載16回目となる今回は、関手と、それが人工ニューラルネットワークを使ってどのように実装できるかを見ていきます。当連載ではこれまで、ボラティリティを予測するというアプローチをとってきましたが、今回はポジションのエントリーとエグジットのシグナルを設定するためのカスタムシグナルクラスの実装を試みます。

カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット
この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。