已发布文章 "彗星尾算法(CTA)"。
在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。
在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。
本文的主要目的是介绍和解释 C_ChartFloatingRAD 类。我们有一个 Chart Trade 指标,它的工作方式非常有趣。您可能已经注意到了,图表上的对象数量仍然很少,但我们却获得了预期的功能。指标中的数值是可以编辑的。问题是,这怎么可能呢?这篇文章将使答案变得更加清晰。
在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
MQL5 自由职业者是一项在线服务,开发人员可以通过这项服务为交易员客户创建交易应用程序而获得收入。该服务自 2010 年起成功运营,迄今已完成超过 10 万个项目,总价值达 700 万美元。我们可以看到,这里涉及到大量资金。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 4的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
虚假回归通常发生在两个时间序列之间仅因偶然因素而展现出高度相关性时,这会导致回归分析产生误导性的结果。在这种情况下,尽管变量之间可能看似存在关联,但这种关联仅仅是巧合,模型可能并不可靠。
我们将探讨统计套利,使用Python搜索具有相关性和协整性的交易品种,为皮尔逊(Pearson)系数制作一个指标,并编制一个用于交易统计套利的EA,该系统将使用Python和ONNX模型进行预测。
基于公允价值缺口(FVG)交易策略的MQL5自动化交易算法创建与分步实施指南。这一教程旨在为无论是初学者还是经验丰富的交易者提供一个实用的EA创建指南。
本文介绍了一种在学术论文《FREL:一种稳定的特征选择算法》中描述的特征选择算法的实现,该算法被称为基于正则化能量的特征加权学习。
开始我们 MQL5 旅程的下一阶段。在这篇深入浅出、适合初学者的文章中,我们将探讨其余的数组函数,揭开复杂概念的神秘面纱,让您能够制定高效的交易策略。我们将讨论 ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse 和 ArraySort。利用这些基本的数组函数,提升您的算法交易专业知识。加入我们的精通 MQL5 之路吧!
牛顿多项式,其依据一组少量点创建二次方程,是一种古老但有趣的时间序列观察方式。在本文中,我们尝试探讨这种方式在哪些方面对交易者有用,并解决其局限性。
MQL5 自由职业者是一项在线服务,开发人员可以通过这项服务为交易员客户创建交易应用程序而获得收入。该服务自 2010 年起成功运营,迄今已完成超过 10 万个项目,总价值达 700 万美元。我们可以看到,这里涉及到大量资金。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
自定义指标(第一部份):在MQL5中逐步开发简单自定义指标的入门指南
学习如何使用MQL5创建自定义指标。这篇入门文章将指引您了解创建简单自定义指标的基础知识,并向初次接触这一有趣话题的MQL5程序员展示编写各种自定义指标的方法。
我们将继续我们的实验,它的目标是研究群体优化算法在群体多样性较低时有效摆脱局部最小值并达到全局最大值的能力。提供了研究的结果。
本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。
本文介绍了一个独特的实验,旨在研究群体优化算法在群体多样性较低时有效逃脱局部最小值并达到全局最大值的能力。朝着这个方向努力将进一步了解哪些特定算法可以使用用户设置的坐标作为起点成功地继续搜索,以及哪些因素会影响它们的成功。
本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
这篇文章的重点在于如何利用MetaTrader 5内置指标来筛选出逆势信号。在上一篇文章的基础上,我们将进一步探讨如何使用MQL5代码将我们的想法最终用代码实现。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 4的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA
在本文中,我们探讨了经典的网格策略,详解 MQL5 的智能交易系统的自动化,并初步分析回测结果。我们强调了该策略对高持有能力的需求,并概括了在未来分期分批优化距离、止盈和手数等关键参数的计划。该系列旨在提高交易策略效率,以及针对不同市场条件的适配性。
这是一种受乌龟壳演化启发的独特优化算法。TSEA算法模拟了角质化皮肤区域的逐渐形成,这些区域代表了一个问题的最优解。最优解会变得更加“坚硬”,并位于更靠近外层表面的位置,而不太理想的解则保持“较软”的状态,并位于内部。该算法通过根据质量和距离对解进行聚类,从而保留了不太理想的选项,并提供了灵活性和适应性。
在本文中,我们将继续开发 DoEasy 库的图形元素,并添加表单对象控件的垂直滚动功能,以及将来需要的一些实用函数和方法。
本文探讨了最著名的非参数同质性检验之一——两样本柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov)检验。文章对模型数据和实际价格都进行了分析。此外,本文还给出了构建非平稳性指标(iSmirnovDistance)的一个示例。
本文将继续探讨 DoEasy 库中的价格形态。我们还将创建价格行为形态中的 "孕线"(Inside Bar)形态类。
我们来创建一些更有趣的东西。我不想毁掉惊喜,故此紧随本文以便更好地理解。自本系列开发回放/模拟器系统的最开始,我就一直说,我们的意图是按相同的方式使用 MetaTrader 5 平台,无论正在开发的系统中,亦或真实市场中。重点是要正确完成。没有人愿意在训练和学习时用一种工具,而在战斗时不得不换另一种工具。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 4的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
学习如何使用MQL5创建自定义指标。这篇入门文章将指引您了解创建简单自定义指标的基础知识,并向初次接触这一有趣话题的MQL5程序员展示编写各种自定义指标的方法。
我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。
在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。
在创建交易策略时,我们需要测试多种多样的保护性止损。这时,一个随着价格变动而动态调整止损位的想法浮现在我的脑海中。抛物线转向(Parabolic SAR)指标无疑是最佳选择。很难想到有比这更简单且视觉上更清晰的指标了。
在本文中,我们将介绍另一个基于波动率的指标——蔡金波动率(Chaikin Volatility)。在了解到蔡金波动率的使用方法和构建方式之后,我们将学习如何构建自定义指标。我们将分享一些可用的简单策略,并对其进行测试,以了解哪个策略更优。
在上一篇文章中,我介绍了如何操作模板数据以便在 OBJ_CHART 中使用。在那篇文章中,我只是概述了这一主题,并没有深入探讨细节,因为在那个版本中,这项工作是以非常简单的方式完成的。这样做是为了更容易解释内容,因为尽管很多事情表面上很简单,但其中有些并不那么明显,如果不了解最简单、最基本的部分,就无法真正理解全局。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA
在本文中,我们探讨了经典的网格策略,详解 MQL5 的智能交易系统的自动化,并初步分析回测结果。我们强调了该策略对高持有能力的需求,并概括了在未来分期分批优化距离、止盈和手数等关键参数的计划。该系列旨在提高交易策略效率,以及针对不同市场条件的适配性。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 4的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。
这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
鲸鱼优化算法(WOA)是一种受座头鲸行为和捕食策略启发的元启发式算法。该算法的核心思想在于模仿所谓的“气泡网”捕食方法,即鲸鱼在猎物周围制造气泡,然后以螺旋运动的方式攻击猎物。
在前面的部分中,我们正在开发的智能交易系统 (EA) 只能使用固定的仓位大小进行交易。这对于测试来说是可以接受的,但在真实账户交易时并不建议这样做。让我们能够使用可变的仓位大小进行交易。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉
本文中的多货币智能系统是一款智能交易系统或交易机器人,它利用两条 RSI 指标线的交叉,即与慢速 RSI 与快速 RSI 两线相交。
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。
ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。
在这篇文章中,我们将介绍一种在MetaTrader 5终端的设置选项卡中选择“自定义最大值”时,实现具有多个目标和约束的优化问题的方法。举例来说,优化问题可以是:最大化利润因子、净利润和恢复因子,同时满足以下条件:回撤小于10%,连续亏损次数少于5次,每周交易次数多于5次。
由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。
在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。