已发布文章 "自动优化 MetaTrader 5 专用 EA"。
本文描述 MetaTrader 5 下自我优化机制的实现。
在这篇文章中,我们将会学习反向马丁格尔技术,并且将会了解是否值得使用它,以及它是否有助于提高您的交易策略。我们将会创建一个 EA 交易来在历史数据上运行, 检查哪个指标是最适合于反向交易技术的 。我们还将验证是否可以不使用任何指标,以独立的交易系统来使用它。另外,我们还将验证反向交易是否可以把一个亏损系统转变为盈利的系统。
任何交易机器人的效率均取决于正确选择(优化)其参数。 然而,在某个时间区间内被认为是最佳的参数可能无法在另一个交易历史区间保持其有效性。 此外,在测试期间表现良好的 EA 在实时状态下最终会亏损。 持续优化的问题就此凸显出来。 当面对大量重复性工作时,人类总会寻找自动化方法。 在本文中,我提出了一种解决此问题的非标准方法。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
MetaTrader 5 是一个多资产平台,此外,它还支持不同的仓位管理系统。这种功能为实现和创建交易思路提供了更加广泛的选择,在本文中,我们将讨论在锁仓模式下处理和计算仓位属性的方法。这篇文章包含了一个派生类,以及展示如何取得和处理锁仓仓位属性的实例 。
本文详述了基于多头力度(Bulls Power),空头力度(Bears Power)和均线指标(EMA - 指数平均)的 Elder-Ray 交易系统。 Alexander Elder 在他的著作“为生活而交易”中描述了这个系统。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
截至2018年10月,MetaTrader官方自由职业者服务的成员已完成超过50,000个订单。这是全球最大的MQL程序员自由职业网站:超过1000名开发人员,每天几十个新订单以及7种语言本地化。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
目前,最大的自动交易应用程序成品商店可提供13,970个产品。它包含4,800个EA、6,500个指标、2,400个实用工具以及其他解决方案。在这种情况下,差不多有一半的应用程序(6,000)可供租用。此外,产品总数的1/4产品(3,800)可以免费下载。
本文研讨三种可用于提高袋封融合分类品质的方法,并对其效率进行了评估。 评估 ELM 神经网络超参数的优化效果,以及后期处理参数。
有多种多样的交易策略,它们中的一些要寻找趋势,而其它的一些会定义价格波动的范围而在其中进行交易。有没有可能把这两种方法组合到一起来增加获利呢?
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
截至2018年10月,MetaTrader官方自由职业者服务的成员已完成超过50,000个订单。这是全球最大的MQL程序员自由职业网站:超过1000名开发人员,每天几十个新订单以及7种语言本地化。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
目前,最大的自动交易应用程序成品商店可提供13,970个产品。它包含4,800个EA、6,500个指标、2,400个实用工具以及其他解决方案。在这种情况下,差不多有一半的应用程序(6,000)可供租用。此外,产品总数的1/4产品(3,800)可以免费下载。
在技术分析中比较几个时间序列是一种很常用的任务,需要合适的工具。在本文中,我提出开发一种用于图形化分析的工具,可以侦测两个或者多个时间序列之间的相互关联。
本文讨论基于实际交易量并使用 CopyTicks() 和 CopyTicksRange() 函数开发股票指标的算法。 还描述了开发此类指标的一些细微环节,以及它们在实时和策略测试器中的操作。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
当开发交易算法时,我们经常遇到这样一个难题:如何确定趋势/盘整从哪里开始和结束?在本文中,我们尝试创建一个通用指标,在其中我们会尝试组合几种不同类型策略的信号。在 EA 交易中,我们将尝试尽可能简化取得交易信号的过程,并将给出一个把几个指标组合为一的实例。
该小工具为网站提供了一个详细的发布时间表,列出了全球大型经济体的500个指标及指数。因此,除了主要的网站内容之外,交易者还能够迅速收到关于所有重要事件的最新消息及其解释和图表。
本文研讨自定义交易历史的评估方法。 并为下载和分析历史记录编写了两个类。 第一个收集交易历史并将其表述为汇总表格。 第二个是处理统计数据: 它计算众多变量并构建图表,以便更有效地评估交易结果。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
整合基于MQL的EA交易和数据库 (SQL Server, .NET 和 C#)
本文描述了如何把操作 Microsoft SQL Server 数据库的功能加到基于 MQL 语言的 EA 交易中,它使用了从一个DLL(动态链接库)中引入函数的方法。这个 DLL 是使用 Microsoft .NET 平台和 C# 语言创建的。本文中使用的方法只要做少许调整,就可以用于使用 MQL4 开发的 EA 交易中。
目前,最大的自动交易应用程序成品商店可提供13,970个产品。它包含4,800个EA、6,500个指标、2,400个实用工具以及其他解决方案。在这种情况下,差不多有一半的应用程序(6,000)可供租用。此外,产品总数的1/4产品(3,800)可以免费下载。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
这是展示开发用于人工交易的多交易品种信号 EA 文章的第二部分,我们已经创建了图形界面,现在是时候把它与程序功能相关联了。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
本文是专门讨论货币对篮子交易系列的总结。 在此,我们测试剩余的形态,并讨论在实际交易中如何应用整体方法。 入场和离场,搜索形态并分析它们,组合指标的复杂应用,这些均有研究。
本文描述了如何把操作 Microsoft SQL Server 数据库的功能加到基于 MQL 语言的 EA 交易中,它使用了从一个DLL(动态链接库)中引入函数的方法。这个 DLL 是使用 Microsoft .NET 平台和 C# 语言创建的。本文中使用的方法只要做少许调整,就可以用于使用 MQL4 开发的 EA 交易中。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
您是否正在运用自己的策略进行交易? 如果您的系统规则可以描述为正规的软件算法,那么最好将交易委托给自动智能系统。 机器人不需要睡觉或食物,也不会受到人类弱点的影响。 在本文中,我们将展示如何在自由职业服务版块订购交易机器人时创建需求规范。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
在这篇文章中,我们继续开发用于操作优化结果的 MQL 应用程序,这一次,我们将会展示如何在通过图形界面指定了其它标准、在优化参数之后生成最佳结果的表格。
本文是专门讨论货币对篮子交易系列的总结。 在此,我们测试剩余的形态,并讨论在实际交易中如何应用整体方法。 入场和离场,搜索形态并分析它们,组合指标的复杂应用,这些均有研究。
您是否正在运用自己的策略进行交易? 如果您的系统规则可以描述为正规的软件算法,那么最好将交易委托给自动智能系统。 机器人不需要睡觉或食物,也不会受到人类弱点的影响。 在本文中,我们将展示如何在自由职业服务版块订购交易机器人时创建需求规范。
我们继续构建融合。 这次,之前创建的融合袋将辅以可训练的合并器 — 深度神经网络。 一个神经网络在修剪后合并了 7 个最佳融合输出。 第二个将融合的所有 500 个输出作为输入,修剪并合并它们。 神经网络将使用 Python 的 keras/TensorFlow 软件包构建。 该软件包的功能也会简要介绍。 还会进行测试并比较装型融合和堆叠融合的分类品质。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
您是否正在运用自己的策略进行交易? 如果您的系统规则可以描述为正规的软件算法,那么最好将交易委托给自动智能系统。 机器人不需要睡觉或食物,也不会受到人类弱点的影响。 在本文中,我们将展示如何在自由职业服务版块订购交易机器人时创建需求规范。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
这是处理和分析优化结果想法的续篇,这一次,我们的目标是选择100个最佳的优化结果并且在图形用户界面(GUI)表格中显示它们。用户将可以在优化结果中选择一行而在独立的图表中得到多交易品种余额和回撤图。
开发基于振荡器的之字折线 (ZigZag) 指标。 执行需求规范的示例
本文根据《订购指标时如何准备需求规范》一文中描述的规范样本之一展示之字折线 (ZigZag) 指标的开发。 该指标利用振荡器所定义的极值来构建。 它能够采用五种振荡器之一: WPR,CCI,Chaikin,RSI 或 Stochastic 振荡器。
把指标代码移动到 EA 交易中可能有多种原因,怎样评估这种方法的优缺点呢?本文描述了在 EA 交易中实现指标代码,还进行了几个实验来评估 EA 交易运行的速度。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
交易信号服务正在突飞猛进地发展。 将我们的资金托付给信号提供者,我们希望尽量减少资金亏损的风险。 那么如何在这个交易信号的森林中解开拼图呢? 如何发现能赚取盈利的产品? 本文提出创建一种工具,可在品种图表中直观地分析交易信号的交易历史。
在交易账户上运行 EA 交易之前,我们通常会在报价历史上测试和优化它。然而,这里会有一个合理的问题: 过去的结果怎么会对我们的未来有所帮助呢?本文描述了使用蒙特卡洛方法来为交易策略的优化构建自定义的标准,另外,还会探讨 EA 交易的稳定性标准。
本文探讨横盘时交易的优缺点。 本文中创建并测试了十种基于在通道内跟踪价格走势的策略。 每种策略都配有过滤机制,旨在避免入场的假信号。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
使用 bagging 的随机森林(Random Forest, RF) 是最强大的机器学习方法之一, 它略微弱于梯度 boosting,这篇文章尝试开发了一个自我学习的交易系统,它会根据与市场的交互经验来做出决策。
这是处理和分析优化结果想法的续篇,这一次,我们的目标是选择100个最佳的优化结果并且在图形用户界面(GUI)表格中显示它们。用户将可以在优化结果中选择一行而在独立的图表中得到多交易品种余额和回撤图。
在交易账户上运行 EA 交易之前,我们通常会在报价历史上测试和优化它。然而,这里会有一个合理的问题: 过去的结果怎么会对我们的未来有所帮助呢?本文描述了使用蒙特卡洛方法来为交易策略的优化构建自定义的标准,另外,还会探讨 EA 交易的稳定性标准。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
大多数订阅者是通过优美的余额曲线和订阅用户数量来选择交易信号。 这就是为什么如今许多提供者只在乎漂亮的统计数据而非信号的真实质量,经常玩弄手数把戏并人为地将余额曲线整理到理想的外观。 本文论述了可靠性准则,以及提供者可用于提高其信号质量的方法。 展现特定信号历史的示例性分析,以及有助于提供者提升盈利并降低风险的方法。
交易信号服务正在突飞猛进地发展。 将我们的资金托付给信号提供者,我们希望尽量减少资金亏损的风险。 那么如何在这个交易信号的森林中解开拼图呢? 如何发现能赚取盈利的产品? 本文提出创建一种工具,可在品种图表中直观地分析交易信号的交易历史。
在这篇文章中,我们继续研究 CAppDialog 的使用。现在我们将会学习如何设置对话框的背景、边框和抬头的颜色。另外,这篇文章还提供了有关在图表中拖曳应用程序窗口时,如何增加透明化它的分步描述。我们还将探讨,怎样创建 CAppDialog 或者 CWndClient 的子类来分析如何操作控件的新特点。最后,我们将从新的角度回顾新项目。
本文讨论了用引导聚合结构构建并训练神经网络融合的方法。 它还确定了构成融合的各独立神经网络分类器的超参数优化的特性。 本文中所创建的神经网络融合的品质将与该系列前一篇文章中获得的优化神经网络的品质进行比较。 已考虑到进一步提高融合分类品质的可能性。
本文涉及评估信号提供商的绩效。我们提供若干附加参数, 从不同于传统方法的独特角度突出显示了信号的交易结果。描述了正确管理和完美交易的概念。我们还使用所获得的结果, 编译多个信号源的投资组合来讨论最佳选择。
当做交易决定时,我们经常必须在多个时段分析图表,同时,这些图表常常包含着图形对象,把相同的对象应用到所有图表中会不大方便,在本文中,我提出了一种自动克隆将要显示在图表中对象的方法。
使用 bagging 的随机森林(Random Forest, RF) 是最强大的机器学习方法之一, 它略微弱于梯度 boosting,这篇文章尝试开发了一个自我学习的交易系统,它会根据与市场的交互经验来做出决策。