
Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão
Na última parte da nossa série sobre aprendizado de máquina e trabalho com big data, voltamos a falar sobre as árvores de decisão. Este artigo é destinado a traders que desejam entender o papel das árvores de decisão na análise de tendências de mercado. Aqui, reunimos todas as informações principais sobre a estrutura, o propósito e o uso dessas árvores. Vamos explorar as raízes e os ramos das árvores algorítmicas e descobrir como elas podem ser aplicadas na tomada de decisões de negociação. Vamos juntos dar um novo olhar às árvores de decisão e ver como elas podem ajudar a superar as dificuldades nos mercados financeiros.

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost
AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.

Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real
Atualmente, nosso EA utiliza um banco de dados para obter as strings de inicialização de instâncias individuais de estratégias de trading. No entanto, o banco de dados é bastante volumoso e contém muitas informações desnecessárias para a operação real do EA. Tentaremos garantir o funcionamento do EA sem a necessidade de conexão obrigatória ao banco de dados.

Algoritmo de algas artificiais (AAA)
Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.

Desenvolvimento de um EA baseado na estratégia de rompimento do intervalo de consolidação em MQL5
O artigo descreve os passos para criar um EA (Expert Advisor) que aproveita os rompimentos de preços após períodos de consolidação. Ao identificar esses intervalos e estabelecer os níveis de rompimento, os traders podem automatizar suas decisões de negociação com base nessa estratégia. O EA foi projetado para fornecer pontos claros de entrada e saída, evitando rompimentos falsos.

Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM
Vamos guiá-lo por todo o processo de DL com Python para criar um modelo GRU em ONNX, culminando na criação de um Expert Advisor (EA) projetado para negociação, e, posteriormente, comparando o modelo GRU com o modelo LSTM.

Otimização por Quimiotaxia Bacteriana (BCO)
Este artigo apresenta a versão original do algoritmo de otimização por quimiotaxia bacteriana (Bacterial Chemotaxis Optimization, BCO) e sua variante modificada. Examinaremos detalhadamente todas as diferenças, com foco especial na nova versão BCOm, que simplifica o mecanismo de movimento das bactérias, reduz a dependência do histórico de mudanças de posição e emprega operações matemáticas mais simples em comparação com a versão original, que possui um alto custo computacional. Além disso, serão realizados testes e apresentadas conclusões.

Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.

Ciência de dados e aprendizado de máquina (Parte 20): Escolha entre LDA e PCA em tarefas de algotrading no MQL5
Neste artigo, vamos considerar métodos de redução de dimensionalidade e sua aplicação no ambiente de trading MQL5. Especificamente, vamos estudar as nuances da Análise Discriminante Linear (LDA) e da Análise de Componentes Principais (PCA), bem como analisar sua influência no desenvolvimento de estratégias e na análise de mercado.

Introdução ao MQL5 (Parte 8): Guia do Iniciante para Construção de Expert Advisors (II)
Este artigo aborda perguntas comuns de iniciantes nos fóruns de MQL5 e apresenta soluções práticas. Aprenda a realizar tarefas essenciais, como comprar e vender, obter preços de velas e gerenciar aspectos de negociação automatizada, como limites de operações, períodos de negociação e limites de lucro/perda. Receba orientações passo a passo para aprimorar sua compreensão e implementação desses conceitos no MQL5.

Busca com restrições — Tabu Search (TS)
O artigo analisa o algoritmo de busca tabu, um dos primeiros e mais conhecidos métodos meta-heurísticos. Exploraremos detalhadamente como o algoritmo funciona, desde a escolha da solução inicial até a exploração das soluções vizinhas, com foco no uso da lista tabu. O artigo cobre os aspectos-chave do algoritmo e suas particularidades.

Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real
À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.

Algoritmo de arquearia — Archery Algorithm (AA)
Neste artigo, examinamos detalhadamente o algoritmo de otimização inspirado na arquearia, com foco no uso do método de roleta como mecanismo de seleção de áreas promissoras para a colocação das "flechas". Esse método permite avaliar a qualidade das soluções e selecionar as posições mais promissoras para um estudo mais aprofundado.

Colmeia artificial de abelhas (ABHA): Testes e resultados
Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.

Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes
O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs
As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.

Negociação de Notícias Facilitada (Parte 3): Realizando Negócios
Neste artigo, nosso especialista em negociação de notícias começará a abrir negociações com base no calendário econômico armazenado em nosso banco de dados. Além disso, melhoraremos os gráficos do especialista para exibir informações mais relevantes sobre os próximos eventos do calendário econômico.

Algoritmo de otimização de migração animal (AMO)
O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.

Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática
Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.