Artigos sobre aprendizado de máquina na negociação

icon

Criação de robôs de negociação baseados em IA: integração nativa com Python, matrizes e vetores, bibliotecas matemáticas e estatísticas e muito mais.

Descubra como usar o aprendizado de máquina no trading. Neurônios, perceptrons, redes convolutivas e recorrentes, modelos preditivos - comece com o básico e aprenda a desenvolver sua própria IA. Você aprenderá como treinar e aplicar redes neurais à negociação algorítmica nos mercados financeiros.

Novo artigo
recentes | melhores
preview
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
preview
Um exemplo de como montar modelos ONNX em MQL5

Um exemplo de como montar modelos ONNX em MQL5

O ONNX (Open Neural Network Exchange) é um padrão aberto para a representação de modelos de redes neurais. Neste artigo, mostraremos a possibilidade de usar dois modelos ONNX simultaneamente em um Expert Advisor.
preview
Redes neurais de maneira fácil (Parte 37): atenção esparsa

Redes neurais de maneira fácil (Parte 37): atenção esparsa

No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.
preview
Teoria das Categorias em MQL5 (Parte 5): Equalizadores

Teoria das Categorias em MQL5 (Parte 5): Equalizadores

A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
preview
Uso de modelos ONNX em MQL5

Uso de modelos ONNX em MQL5

O ONNX (Open Neural Network Exchange) é um padrão aberto para a representação de modelos de redes neurais. Neste artigo, consideraremos o processo de criação do modelo SNN-LSTM para previsão de séries temporais financeiras e o uso do modelo ONNX criado em um Expert Advisor MQL5.
preview
Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)

Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)

O artigo descreve os princípios, os métodos e as possibilidades de aplicação do EM a diferentes problemas de otimização. Ele uma ferramenta de otimização eficiente, capaz de lidar com grandes quantidades de dados e funções multidimensionais.
preview
Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições

Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições

A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.
preview
Algoritmos de otimização populacionais: Algoritmo de mudas, semeadura e crescimento (SSG)

Algoritmos de otimização populacionais: Algoritmo de mudas, semeadura e crescimento (SSG)

O algoritmo de “mudas, semeadura e crescimento” (Saplings Sowing and Growing up, SSG) é inspirado em um dos organismos mais resistentes do planeta, um exemplo notável de sobrevivência em inúmeras condições.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)

Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)

Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.
preview
Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Nos modelos de aprendizado por reforço discutidos anteriormente, usamos diferentes variantes de redes convolucionais, que são capazes de identificar diferentes corpos nos dados brutos. A principal vantagem das redes convolucionais é sua capacidade de identificar objetos independentemente de sua localização. No entanto, as redes convolucionais nem sempre são capazes de lidar com as diversas deformações e ruídos que os objetos apresentam. Mas esses problemas podem ser resolvidos pelo modelo relacional.
preview
Experimentos com redes neurais (Parte 4): Padrões

Experimentos com redes neurais (Parte 4): Padrões

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 12): É possível ter sucesso no mercado com redes neurais de autoaprendizagem?

Ciência de Dados e Aprendizado de Máquina (Parte 12): É possível ter sucesso no mercado com redes neurais de autoaprendizagem?

Certamente muitas pessoas estão cansadas ​​​​de tentar constantemente prever o mercado de ações. Você gostaria de ter uma bola de cristal que o ajudasse a tomar melhores decisões de investimento? As redes neurais autoaprendentes podem ser a solução para isso. Neste artigo, vamos ver se esses algoritmos poderosos podem ajudar a surfar na onda e ser mais espertos que o mercado de ações. Ao analisar grandes volumes de dados e identificar padrões, as redes neurais autoaprendentes podem fazer previsões que geralmente são mais precisas do que as previsões dos traders. Vamos descobrir se essas tecnologias avançadas podem ser utilizadas para tomar decisões de investimento mais inteligentes e obter mais lucros.
preview
Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Neste artigo, estaremos analisando o algoritmo do macaco (Monkey Algorithm, MA). A habilidade destes animais ágeis para superar obstáculos complexos e atingir as partes mais inacessíveis das árvores foi a inspiração para a concepção do MA.
preview
Teoria das Categorias em MQL5 (Parte 3)

Teoria das Categorias em MQL5 (Parte 3)

A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.
preview
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
preview
Algoritmos de otimização populacionais: Busca harmônica (Harmony Search, HS)

Algoritmos de otimização populacionais: Busca harmônica (Harmony Search, HS)

Hoje, estudaremos e testaremos o algoritmo de otimização mais avançado, a busca harmônica (HS), que é inspirada no processo de procura da harmonia sonora perfeita. Então, qual algoritmo é agora o líder em nossa classificação?
preview
Redes neurais de retropropagação em matrizes MQL5

Redes neurais de retropropagação em matrizes MQL5

Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.
preview
Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)

Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)

O GSA é um algoritmo populacional inspirado na natureza inanimada. Sua capacidade de modelar com alta precisão a interação entre corpos físicos, através da lei da gravidade de Newton incorporada no algoritmo, permite contemplar um espetáculo fascinante de dança entre sistemas planetários e aglomerados galácticos, representado de forma impressionante em animações. Hoje vamos discutir um dos algoritmos de otimização mais interessantes e originais. Um simulador de movimento de objetos espaciais está incluído.
preview
Medindo o valor informativo do Indicador

Medindo o valor informativo do Indicador

O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.
preview
Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
preview
Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)

Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)

A base da estratégia de forrageamento de E. coli (E. coli) inspirou cientistas a desenvolverem o algoritmo de otimização BFO. Esse algoritmo apresenta ideias originais e abordagens promissoras para otimização e merece um estudo mais aprofundado.
preview
Experiências com redes neurais (Parte 3): Uso pratico

Experiências com redes neurais (Parte 3): Uso pratico

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Algoritmos de otimização populacionais: Algoritmo do morcego

Algoritmos de otimização populacionais: Algoritmo do morcego

Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
preview
Algoritmos de otimização populacionais: algoritmo de vaga-lumes

Algoritmos de otimização populacionais: algoritmo de vaga-lumes

Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.
preview
Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
preview
Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview
Teoria das Categorias em MQL5 (Parte 2)

Teoria das Categorias em MQL5 (Parte 2)

A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL5. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
preview
Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

A regressão de Ridge é uma técnica simples para reduzir a complexidade do modelo e evitar o ajuste excessivo que pode resultar da regressão linear simples
preview
Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

As matrizes servem como base para os algoritmos de aprendizado de máquina e computação em geral devido à sua capacidade de lidar efetivamente com grandes operações matemáticas. A biblioteca padrão tem tudo o que é necessário, mas vamos ver como podemos estendê-la introduzindo várias funções no arquivo utils, ainda não disponível na biblioteca
preview
Teoria das Categorias em MQL5 (Parte 1)

Teoria das Categorias em MQL5 (Parte 1)

A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
preview
Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,

Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,

Continuamos a estudar o aprendizado Q distribuído e hoje veremos essa abordagem de outro ponto de vista. Falaremos sobre a possibilidade de usar regressão quantílica para resolver o problema de previsão de movimentos de preços.
preview
Integrando modelos de ML ao Testador de estratégias  (Parte 3): Gerenciamento de Arquivos CSV(II)

Integrando modelos de ML ao Testador de estratégias (Parte 3): Gerenciamento de Arquivos CSV(II)

Este artigo fornece uma visão detalhada sobre como construir uma classe em MQL5 para gerenciamento eficiente de arquivos CSV. Ele explica como os métodos de abertura, escrita, leitura e conversão de dados são implementados e como eles podem ser utilizados para armazenar e carregar dados. Além disso, o artigo também discute as limitações e considerações importantes ao usar essa classe. É uma leitura valiosa para aqueles interessados em aprender a trabalhar com arquivos CSV em MQL5.
preview
Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)

Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)

O próximo algoritmo que abordaremos será a otimização de busca de cuco usando voos Levy. Este é um dos algoritmos de otimização mais recentes e um novo líder na tabela de classificação.
preview
Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Algoritmos de otimização populacionais: Otimizador lobo-cinzento (GWO)

Vamos falar sobre um dos algoritmos de otimização mais recentes e modernos: o "Packs of grey wolves" (manada de lobos-cinzentos). Devido ao seu comportamento distinto em funções de teste, este algoritmo se torna um dos mais interessantes em comparação com outros considerados anteriormente. Ele é um dos principais candidatos para treinamento de redes neurais e para otimizar funções suaves com muitas variáveis.
preview
Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Algoritmos de otimização populacionais: Colônia artificial de abelhas (Artificial Bee Colony, ABC)

Hoje estudaremos o algoritmo de colônia artificial de abelhas. Complementaremos nosso conhecimento com novos princípios para estudar espaços funcionais. E neste artigo falarei sobre minha interpretação da versão clássica do algoritmo.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

O trader moderno está quase sempre à procura de novas ideias. Para isso, tenta novas estratégias, modifica e descarta aquelas que não funcionam. Nesta série de artigos, tentarei provar que o assistente MQL5 é a verdadeira espinha dorsal de um trader moderno.
preview
Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Este é um algoritmo preguiçoso que não aprende com o conjunto de dados de treinamento, ele armazena o conjunto de dados e age imediatamente quando ele recebe uma nova amostra. Por mais simples que ele seja, ele é usado em uma variedade de aplicações do mundo real
preview
Ciência de Dados e Aprendizado de Máquina (Parte 08): Agrupamento K-Means em MQL5

Ciência de Dados e Aprendizado de Máquina (Parte 08): Agrupamento K-Means em MQL5

A mineração de dados é crucial para um cientista de dados e um trader porque, muitas vezes, os dados não são tão diretos quanto pensamos, o olho humano não consegue entender o padrão subjacente menor e as relações no conjunto de dados, talvez o algoritmo K-means pode nos ajudar com isso. Vamos descobrir...