ニューラルネットワークが簡単に(第10回): Multi-Head Attention
ニューラルネットワークにおける自己注意のメカニズムについては、以前に検討しました。実際には、最新のニューラルネットワークアーキテクチャは、いくつかの並列した自己注意スレッドを使用して、シーケンスの要素間のさまざまな依存関係を見つけます。このようなアプローチの実装を検討し、ネットワーク全体のパフォーマンスへの影響を評価しましょう。
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。
自己適応アルゴリズム(第III部):最適化の放棄
履歴データに基づく最適化を使用してパラメータを選択する場合、真に安定したアルゴリズムを取得することは不可能です。安定したアルゴリズムは、常時、どんな取引商品で作業していても、必要なパラメータを認識している必要があります。予測や推測ではなく、確実に知っているべきです。
自己適応アルゴリズムの開発(第II部): 効率の向上
この記事では、以前に作成したアルゴリズムの柔軟性を向上させることでトピックの開発を続けます。アルゴリズムは、分析期間内のローソク足の数の増加または上昇/下降ローソク足超過率のしきい値の増加によって、より安定しました。分析のためにより大きなサンプルサイズを設定するかより高いローソク足の超過率を設定して、妥協する必要がありました。
パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線
本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。
CatBoostアルゴリズムを使用した外国為替市場の季節によるパターンの特定
本稿では、時間フィルタを使用した機械学習モデルの作成について検討し、このアプローチの有効性について説明します。人的要因はモデルに特定の曜日の特定の時間に取引するように指示するだけで排除できるようになっています。パターン検索は、別のアルゴリズムで提供できます。
市場とそのグローバルパターンの物理学
本稿では、市場を少しでも理解してるシステムはどれでも世界規模で運用できるという前提を試してみます。理論やパターンは発明せずに既知の事実のみを使用し、これらの事実を徐々に数学的分析の言語に翻訳していきます。
自己適応アルゴリズムの開発(第I部):基本的なパターンの検索
この連載では、ほとんどの市場要因を考慮した自己適応アルゴリズムの開発を示すとともに、これらの状況を体系化してロジックで説明し、取引活動で考慮に入れる方法を示します。非常に単純なアルゴリズムから始めて、徐々に理論を習得し、非常に複雑なプロジェクトに進化していきます。
ニューラルネットワークが簡単に(第9部):作業の文書化
長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。
ニューラルネットワークが簡単に(第8回): アテンションメカニズム
以前の記事では、ニューラルネットワークを整理するための様々な選択肢を既に検証しました. また、画像処理アルゴリズムから借りた畳み込みネットワークについても検討しました. 今回の記事では、言語モデルの開発に弾みをつけた「アテンション・メカニズム」を考えることを提案します.
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。
DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列
時系列の操作に関するトピックのしめくくりとして、指標バッファに格納されているストレージ、検索、およびデータの並べ替えを整理します。これにより、プログラムでライブラリベースで作成される指標の値に基づいて分析をさらに実行できます。ライブラリのすべてのコレクションクラスの一般的な概念により、対応するコレクションで必要なデータを簡単に見つけることができます。それぞれ、今日作成されたクラスでも同じことが可能です。
パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。
スプレッドシートを使ってトレード戦略を構築する
この記事では、スプレッドシート(Excel、Calc、Google)を使ってあらゆる戦略を分析できるようにするための基本的な考え方や方法を解説します。 得られた結果をMetaTrader5のテスターと比較します。
手動チャートおよび取引ツールキット(第II部)チャートグラフィック描画ツール
これは連載の次の記事で、キーボードショートカットを使用してチャートグラフィックを手動で適用するための便利なライブラリを作成した方法を示します。使用されるツールには、直線とその組み合わせが含まれます。第2部では、第1部で説明した関数を使用して、描画ツールがどのように適用されるかを確認します。ライブラリは、チャート作成タスクを大幅に簡素化する任意のエキスパートアドバイザーまたはインディケーターに接続できます。このソリューションは外部DLLを使用せず、すべてのコマンドは組み込みのMQLツールを使用して実装されます。
トランスダクション・アクティブ機械学習におけるスロープブースト
本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
ニューラルネットワークが簡単に(第7回): 適応的最適化法
以前の記事では、ネットワーク内のすべてのニューロンに対して同じ学習率を用いてニューラルネットワークをトレーニングするためにストキャスティクススロープ降下法を使用しました。 本論文では、各ニューロンの学習速度を変化させることができる適応学習法に着目します。 その是非についても検討していきたいと思います。
アルゴリズム取引から100万ドルを稼ぐ方法?MQL5.comサービスを使用してください
トレーダーは皆、最初の百万ドルを稼ぐことを目標に市場を訪れます。過度のリスクと初期予算なしでこれを行う方法は何でしょうか。MQL5サービスは、世界中の開発者やトレーダーにそのような機会を提供します。
取引システムの開発と分析への最適なアプローチ
本稿では、資金を投資するためのシステムまたはシグナルを選択する際に使用する基準を示すとともに、取引システムの開発への最適なアプローチを説明し、外国為替取引におけるこの問題の重要性を強調します。
ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。
ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算
ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
DoEasyライブラリの時系列(第55部): 指標コレクションクラス
本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。
DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス
本稿では、基本抽象指標の子孫オブジェクトのクラスの作成について検討しています。このようなオブジェクトは、指標EAを作成し、さまざまな指標と価格のデータ値統計を収集および取得する機能へのアクセスを備えています。また、プログラムで作成された各指標のプロパティとデータにアクセスできる指標オブジェクトコレクションを作成します。
パターン検索への総当たり攻撃アプローチ
本稿では、市場パターンを検索し、特定されたパターンに基づいてエキスパートアドバイザーを作成し、これらのパターンが有効であるかどうかを確認します。
ニューラルネットワークが簡単に(第4回): リカレントネットワーク
これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。
ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。
外国為替取引の背後にある基本的な数学
この記事は、外国為替取引の主な機能をできるだけ簡単かつ迅速に説明し、初心者といくつかの基本的なアイデアを共有することを目的としています。また、簡単なインディケータ―の開発を紹介するとともに、取引コミュニティで最も興味をそそる質問への回答を試みます。
DoEasyライブラリの時系列(パート53):抽象基本指標クラス
本稿では抽象指標を作成し、ライブラリの標準指標とカスタム指標のオブジェクトを作成するための基本クラスとしてさらに使用します。
並列粒子群最適化
本稿では、粒子群アルゴリズムを使用した高速最適化の手法について説明しています。また、この手法のMQLでの実装を提示します。これは、エキスパートアドバイザー内のシングルスレッドモードとローカルテスターエージェントで実行されるアドオンとしての並列マルチスレッドモードの両方ですぐに使用できます。
トレーディングアルゴリズム開発への科学的アプローチ
この記事では、一貫した科学的アプローチを用いて価格パターンを分析し、それに基づいてトレードアルゴリズムを構築するという、トレードアルゴリズムを開発するための方法論を考察します。 開発の理想を事例を用いて示します。
DoEasyライブラリの時系列(第50部): シフト付き複数銘柄・複数期間標準指標
本稿では、複数銘柄・複数期間標準指標を正しく表示するためのライブラリメソッドを改善して、設定されたシフトによってシフトされたラインが現在の銘柄チャートに表示されるようにします。また、標準指標を使用するメソッドを整理し、最終的な指標プログラムのライブラリにある冗長なコードを削除します。
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。
ニューラルネットワークが簡単に(第2回): ネットワークのトレーニングとテスト
第2回目の今回は、引き続きニューラルネットワークの勉強をし、作成したCNetクラスをEAで使用した例を考えていきます。 学習時間、予測精度ともに同様の結果を示す2つのニューラルネットワークモデルを用いてタスクを行います。
トレンドとは何か、相場の構造はトレンドかレンジかで決まるのか?
トレーダーはよくトレンドやレンジについて話しますが、トレンドやレンジとは何かを理解している人はほとんどおらず、概念を明確に説明できる人はさらにいません。 基本的な用語について考察することは、多くの場合、偏見や誤解の固まりに悩まされます。 しかし、利益を上げたいのであれば、概念の数学的・論理的な意味を理解する必要があります。 今回は、トレンドとレンジの本質に迫るとともに、相場の構造がトレンドなのか、レンジなのか、何か別のものなのかを定義してみたいと思います。 また、トレンド相場やレンジ相場で利益を出すための最適な戦略についても考えていきたいと思います。
価格系列の離散化、ランダム成分とノイズ
普段我々はローソク足や、価格シリーズを一定の間隔でスライスした足を使って相場を分析しています。 このような離散化手法は、相場の動きの本当の構造を歪めてしまうのではないでしょうか? オーディオ信号は時間の経過とともに変化する関数であるため、オーディオ信号を一定の間隔で離散化することは、許容される解決策です。 信号自体は時間に依存する振幅です。 この信号特性は基本的なものです。
DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標
この記事では、標準指標を操作する方法の開発を開始します。これにより、最終的には、ライブラリクラスに基づいて複数銘柄の複数期間の標準指標を作成できるようになります。さらに、「スキップされたバー」イベントを時系列クラスに追加し、ライブラリ準備関数をCEngineクラスに移動することで、メインプログラムコードからの過度の負荷を排除します。
買われすぎ・売られすぎゾーンの検出方法について。 第一部
買われすぎ/売られすぎのゾーンは、相場の特定の状態を特徴づけ、有価証券の価格の弱い変化によって区別されます。 シナミクスにおけるこの不利な変化は、あらゆるスケールのトレンドの成長の最終段階で顕著です。 トレードにおける利益価値は、可能な限り大きなトレンド振幅をカバーできるかどうかに直接依存するため、このようなゾーンを検出する精度は、どのような証券でも重要な課題となります。