Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
preview
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)

En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.
preview
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.
preview
Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase

Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase

Este artículo constituye la cuarta entrega de nuestra serie sobre gestión de riesgo en MQL5, donde continuamos explorando técnicas avanzadas para proteger y optimizar nuestras estrategias de trading. Luego de haber sentado bases importantes en artículos anteriores, ahora nos centraremos en finalizar todos aquellos métodos pendientes que dejamos en la tercera parte, incluyendo funciones para verificar si se han alcanzado ciertos límites de pérdidas o ganancias. Además, presentaremos nuevos eventos clave que permiten una gestión más precisa y ágil.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.
preview
Métodos de William Gann (Parte II): Creación del indicador Cuadrado de Gann

Métodos de William Gann (Parte II): Creación del indicador Cuadrado de Gann

Crearemos un indicador basado en el Cuadrado de Gann de 9, construido elevando al cuadrado el tiempo y el precio. Prepararemos el código y probaremos el indicador en la plataforma en diferentes intervalos de tiempo.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.
preview
Métodos de William Gann (Parte I): Creación del indicador de ángulos de Gann

Métodos de William Gann (Parte I): Creación del indicador de ángulos de Gann

¿Cuál es la esencia de la teoría de Gann? ¿Cómo se construyen los ángulos de Gann? Crearemos un indicador de ángulos de Gann para MetaTrader 5.
preview
Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

La comprensión del comportamiento de los agentes es importante en distintos ámbitos, pero la mayoría de los métodos se centran en una única tarea (comprensión, eliminación del ruido, predicción), lo cual reduce su eficacia en escenarios del mundo real. En este artículo, propongo al lector introducir un modelo capaz de adaptarse a diferentes tareas.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Piense en un asesor experto independiente. Anteriormente, analizamos un Asesor Experto basado en indicadores que también se asoció con un script independiente para dibujar la geometría de riesgo y recompensa. Hoy discutiremos la arquitectura de un Asesor Experto MQL5, que integra todas las características en un solo programa.
preview
Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Este artículo presenta una guía completa para implementar un sistema comercial sofisticado utilizando análisis de red de causalidad (CNA) y autorregresión vectorial (Vector autoregression, VAR) en MQL5. Abarca los fundamentos teóricos de estos métodos, ofrece explicaciones detalladas de las funciones clave del algoritmo de negociación e incluye código de ejemplo para su aplicación.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte

La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
preview
Aplicación de la teoría de juegos de Nash con filtrado HMM en el trading

Aplicación de la teoría de juegos de Nash con filtrado HMM en el trading

Este artículo profundiza en la aplicación de la teoría de juegos de John Nash, específicamente el Equilibrio de Nash, en el trading. Se analiza cómo los traders pueden utilizar scripts de Python y MetaTrader 5 para identificar y explotar las ineficiencias del mercado utilizando los principios de Nash. El artículo proporciona una guía paso a paso sobre la implementación de estas estrategias, incluido el uso de modelos ocultos de Markov (HMM) y análisis estadístico, para mejorar el rendimiento comercial.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 3): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto MQL5 que codifica capturas de pantalla de gráficos como datos de imagen y las envía a un chat de Telegram a través de peticiones HTTP. Al integrar la codificación y transmisión de fotos, mejoramos el sistema existente MQL5-Telegram con perspectivas visuales de trading directamente dentro de Telegram.
preview
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.
preview
Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo

Gestión de Riesgo (parte 3): Construyendo la Clase Principal para la Gestión de Riesgo

En este artículo daremos inicio a la creación de la clase principal de gestión de riesgo, la cual será fundamental para administrar el riesgo en el sistema. Nos enfocaremos en construir las bases, definiendo estructuras, variables y funciones esenciales. Además, implementaremos los métodos necesarios para asignar valores a las pérdidas y ganancias máximas, estableciendo así los cimientos de esta gestión.
preview
Redes neuronales en el trading: Resultados prácticos del método TEMPO

Redes neuronales en el trading: Resultados prácticos del método TEMPO

Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.
preview
Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.
preview
Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Redes neuronales en el trading: Uso de modelos de lenguaje para la predicción de series temporales

Continuamos nuestro análisis de los modelos de pronóstico de series temporales. En este artículo le propongo familiarizarnos con un algoritmo complejo construido sobre el uso de un modelo de lenguaje previamente entrenado.
preview
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.
preview
Integración en MQL5: Python

Integración en MQL5: Python

Python es un lenguaje de programación conocido y popular con muchas características, especialmente en los campos de las finanzas, la ciencia de datos, la Inteligencia Artificial y el Aprendizaje Automático. Python es una herramienta poderosa que también puede resultar útil en el trading. MQL5 nos permite utilizar este poderoso lenguaje como una integración para lograr nuestros objetivos de manera efectiva. En este artículo, compartiremos cómo podemos usar Python como una integración en MQL5 después de aprender información básica sobre Python.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (I)

En esta discusión, crearemos nuestro primer Asesor Experto en MQL5 basado en el indicador que creamos en el artículo anterior. Cubriremos todas las características necesarias para automatizar el proceso, incluida la gestión de riesgos. Esto beneficiará ampliamente a los usuarios para pasar de la ejecución manual de operaciones a sistemas automatizados.
preview
Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)

Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)

En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.
preview
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 2): Envío de señales de MQL5 a Telegram

En este artículo, creamos un Asesor Experto integrado con MQL5 y Telegram que envía señales de cruce de medias móviles a Telegram. Detallamos el proceso de generación de señales de trading a partir de cruces de medias móviles, implementando el código necesario en MQL5, y asegurando que la integración funciona a la perfección. El resultado es un sistema que proporciona alertas comerciales en tiempo real directamente a su chat grupal de Telegram.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 1): Envío de mensajes desde MQL5 a Telegram

En este artículo, creamos un Asesor Experto (EA) en MQL5 para enviar mensajes a Telegram usando un bot. Configuramos los parámetros necesarios, incluido el token de API del bot y el ID de chat, y luego realizamos una solicitud HTTP POST para entregar los mensajes. Posteriormente, gestionamos la respuesta para garantizar una entrega exitosa y solucionar cualquier problema que surja en caso de falla. Esto garantiza que enviemos mensajes desde MQL5 a Telegram a través del bot creado.
preview
Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5

Implementación de Deus EA: Trading automatizado con RSI y promedios móviles en MQL5

Este artículo describe los pasos para implementar Deus EA basado en los indicadores RSI y promedio móvil para guiar el trading automatizado.
preview
Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.
preview
Gestión de Riesgo (Parte 2): Implementando el Cálculo de Lotes en una Interfaz Gráfica

Gestión de Riesgo (Parte 2): Implementando el Cálculo de Lotes en una Interfaz Gráfica

En este artículo exploraremos cómo mejorar y aplicar de manera más efectiva los conceptos abordados en el artículo anterior, utilizando las poderosas librerías de controles gráficos de MQL5. Te guiaré paso a paso en la creación de una interfaz gráfica completamente funcional, explicando el plan de diseño detrás de ella, así como el propósito y funcionamiento de cada método empleado. Además, al final del artículo, pondremos a prueba el panel que desarrollaremos, asegurándonos de que funcione correctamente y cumpla con los objetivos planteados.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (I) Ajuste fino

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (I) Ajuste fino

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.
preview
Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Es una práctica común que muchos modelos de Inteligencia Artificial predigan un único valor futuro. Sin embargo, en este artículo profundizaremos en la poderosa técnica de utilizar modelos de aprendizaje automático para predecir múltiples valores futuros. Este enfoque, conocido como pronóstico de múltiples pasos, nos permite predecir no sólo el precio de cierre de mañana, sino también el de pasado mañana y más allá. Al dominar la previsión en varios pasos, los operadores y los científicos de datos pueden obtener conocimientos más profundos y tomar decisiones más informadas, mejorando significativamente sus capacidades de predicción y planificación estratégica.
preview
MetaTrader 5 en macOS

MetaTrader 5 en macOS

Hemos preparado un instalador especial de la plataforma comercial MetaTrader 5 para macOS: se trata de un asistente completo que permite instalar la aplicación como nativa, y que realiza todas las acciones necesarias: detecta su sistema, descarga e instala la última versión de Wine para él, lo configura, y luego instala MetaTrader dentro del mismo. Todo sucede en modo automático, solo hay que esperar a que se complete la instalación, después de lo cual se podrá empezar a trabajar inmediatamente con la plataforma.
preview
Implementación de una estrategia de trading con Bandas de Bollinger en MQL5: Guía paso a paso

Implementación de una estrategia de trading con Bandas de Bollinger en MQL5: Guía paso a paso

Una guía paso a paso para implementar un algoritmo de trading automatizado en MQL5 basado en la estrategia de trading de las Bandas de Bollinger. Un tutorial detallado basado en la creación de un Asesor Experto que puede ser útil para los traders.
preview
De principiante a experto: El viaje esencial a través del trading con MQL5

De principiante a experto: El viaje esencial a través del trading con MQL5

¡Libera tu potencial! Estás rodeado de oportunidades. Descubra 3 secretos principales para iniciar su viaje hacia MQL5 o llevarlo al siguiente nivel. Vamos a hablar de consejos y trucos tanto para principiantes como para profesionales.
preview
Creación de un panel de indicadores de fuerza relativa (RSI) dinámico, multisímbolo y multiperíodo en MQL5

Creación de un panel de indicadores de fuerza relativa (RSI) dinámico, multisímbolo y multiperíodo en MQL5

En este artículo, desarrollamos un panel dinámico de indicadores RSI multisímbolo y multiperiodo en MQL5, que proporciona a los operadores valores RSI en tiempo real a través de varios símbolos y marcos temporales. El panel cuenta con botones interactivos, actualizaciones en tiempo real e indicadores codificados por colores para ayudar a los operadores a tomar decisiones informadas.