Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Practicando el desarrollo de estrategias de trading

Practicando el desarrollo de estrategias de trading

En este artículo, intentaremos desarrollar nuestra propia estrategia de trading. Toda estrategia de trading debe basarse en algún tipo de ventaja estadística. Además, esta ventaja debería existir durante mucho tiempo.
preview
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)

Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)

En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

En las partes anteriores, el Asesor Experto (EA) en desarrollo sólo podía utilizar un tamaño de posición fijo para operar. Esto es aceptable para las pruebas, pero no es aconsejable cuando se opera en una cuenta real. Hagamos posible el comercio utilizando tamaños de posición variables.
preview
Puntuación de propensión (Propensity score) en la inferencia causal

Puntuación de propensión (Propensity score) en la inferencia causal

Este artículo trata el tema del emparejamiento en la inferencia causal. El emparejamiento se usa para emparejar observaciones similares en un conjunto de datos. Esto es necesario para identificar correctamente los efectos causales, eliminando el sesgo. Hoy explicaremos cómo esto ayuda a crear sistemas comerciales basados en el aprendizaje automático que se vuelven más robustos con nuevos datos en los que no se ha entrenado. El papel principal lo asignaremos a la puntuación de propensión, ampliamente utilizada en la inferencia causal.
preview
Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

¿Podemos beneficiarnos de la estacionalidad al crear modelos para Deep Learning con Python? ¿Ayuda el filtrado de datos para los modelos ONNX a obtener mejores resultados? ¿Qué periodo de tiempo debemos utilizar? Trataremos todo esto a lo largo de este artículo.
preview
Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

El agrupamiento basado en densidad para aplicaciones con ruido (DBSCAN) es una forma no supervisada de agrupar datos que apenas requiere parámetros de entrada, salvo solo 2, lo cual, en comparación con otros enfoques como k-means, es una ventaja. Profundizamos en cómo esto podría ser constructivo para probar y eventualmente operar con Asesores Expertos montados por Wizard MQL5.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Tras empezar a desarrollar un EA multidivisa, ya hemos obtenido algunos resultados y hemos conseguido realizar varias iteraciones de mejora del código. Sin embargo, nuestro EA fue incapaz de trabajar con órdenes pendientes y reanudar la operación después del reinicio del terminal. Añadamos estas características.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 1): Para EAs e Indicadores Técnicos

Creación de un modelo de restricción de tendencia de velas (Parte 1): Para EAs e Indicadores Técnicos

Este artículo está dirigido a principiantes y desarrolladores avanzados de MQL5. Proporciona un fragmento de código para definir y limitar los indicadores generadores de señales a tendencias en plazos superiores. De este modo, los operadores pueden mejorar sus estrategias incorporando una perspectiva de mercado más amplia, lo que da lugar a señales de negociación potencialmente más sólidas y fiables.
preview
Formulación Genérica de Optimización (GOF, Generic Optimization Formulation) utilizando el `Criterio máximos del usuario` (Custom Max) con múltiples restricciones en el Probador de Estrategias

Formulación Genérica de Optimización (GOF, Generic Optimization Formulation) utilizando el `Criterio máximos del usuario` (Custom Max) con múltiples restricciones en el Probador de Estrategias

En este artículo presentaremos una forma de implementar problemas de optimización con múltiples objetivos y restricciones al seleccionar «Custom Max» en la pestaña Setting del terminal MetaTrader 5. Como ejemplo, el problema de optimización podría ser: Maximizar el Factor de Beneficio, el Beneficio Neto y el Factor de Recuperación, de forma que la reducción sea inferior al 10%, el número de pérdidas consecutivas sea inferior a 5 y el número de operaciones por semana sea superior a 5.
preview
Redes neuronales: así de sencillo (Parte 78): Detector de objetos basado en el Transformer (DFFT)

Redes neuronales: así de sencillo (Parte 78): Detector de objetos basado en el Transformer (DFFT)

En este artículo, le propongo abordar la creación de una estrategia comercial desde una perspectiva diferente. Hoy no pronosticaremos los movimientos futuros de los precios, sino que trataremos de construir un sistema comercial basado en el análisis de datos históricos.
preview
Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton

Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton

Las máquinas de vectores de soporte clasifican los datos en función de clases predefinidas explorando los efectos de aumentar su dimensionalidad. Se trata de un método de aprendizaje supervisado bastante complejo dado su potencial para tratar datos multidimensionales. Para este artículo consideramos cómo su implementación muy básica de datos bidimensionales puede hacerse más eficientemente con el polinomio de Newton al clasificar precio-acción.
preview
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
preview
Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Embárquese en la siguiente fase de nuestro viaje MQL5. En este artículo para principiantes analizaremos el resto de funciones de la matriz y desmitificaremos conceptos complejos para que pueda elaborar estrategias de negociación eficaces. Hablaremos de ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse y ArraySort. Aumente su experiencia en negociación algorítmica con estas funciones de matriz esenciales. ¡Únase a nosotros en el camino hacia el dominio de MQL5!
preview
Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

El polinomio de Newton, que crea ecuaciones cuadráticas a partir de un conjunto de unos pocos puntos, es un enfoque arcaico pero interesante para observar una serie temporal. En este artículo tratamos de explorar qué aspectos podrían ser de utilidad para los operadores desde este enfoque, así como abordar sus limitaciones.
preview
Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

En nuestros modelos, a menudo utilizamos varios algoritmos de atención. Y, probablemente, lo más frecuente es utilizar transformadores. Su principal desventaja es la necesidad de recursos. En este artículo, estudiaremos un nuevo algoritmo que puede ayudar a reducir los costes informáticos sin perder calidad.
preview
Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer

Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer

Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.
preview
Desarrollo y prueba de sistemas comerciales basados en el canal de Keltner

Desarrollo y prueba de sistemas comerciales basados en el canal de Keltner

En este artículo examinaremos los sistemas comerciales que utilizan un concepto muy importante de los mercados financieros: la volatilidad. Asimismo, estudiaremos un sistema comercial basado en el Canal de Keltner, incluyendo su implementación en código y sus pruebas con varios activos.
preview
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
preview
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
preview
Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo

Introducción a MQL5 (Parte 4): Estructuras, clases y funciones de tiempo

En esta serie, seguiremos desvelando los secretos de la programación. En nuestro nuevo artículo, aprenderemos los fundamentos de las estructuras, las clases y las funciones de tiempo y adquiriremos nuevas habilidades para lograr una programación eficiente. Esta guía será probablemente útil no solo para los principiantes, sino también para los desarrolladores experimentados, ya que simplifica conceptos complejos, ofreciendo información valiosa para dominar MQL5. Así que hoy podrá seguir aprendiendo cosas nuevas, mejorando sus conocimientos de programación y dominando el mundo del trading algorítmico.
preview
Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Redes neuronales: así de sencillo (Parte 74): Predicción de trayectorias con adaptación

Este artículo presenta un método bastante eficaz de previsión de trayectorias de múltiples agentes, capaz de adaptarse a diversas condiciones ambientales.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Ya hemos avanzado bastante en el desarrollo del asesor multidivisa con varias estrategias funcionando en paralelo. Basándonos en nuestra experiencia, revisaremos la arquitectura de nuestra solución y trataremos de mejorarla antes de avanzar demasiado.
preview
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
preview
Usamos algoritmos de optimización para ajustar los parámetros del asesor sobre la marcha

Usamos algoritmos de optimización para ajustar los parámetros del asesor sobre la marcha

El artículo analizará diversos aspectos prácticos relacionados con el uso de algoritmos de optimización para encontrar los mejores parámetros de un asesor sobre la marcha, y también virtualizar las operaciones comerciales y la lógica del asesor. El lector puede usar este artículo a modo de instrucciones para implementar algoritmos de optimización en un asesor comercial.
preview
Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

El proyecto consiste en utilizar Python para realizar previsiones basadas en el aprendizaje profundo en los mercados financieros. Exploraremos los entresijos de la comprobación del rendimiento del modelo utilizando métricas clave como el error medio absoluto (MAE, Mean Absolute Error), el error medio cuadrático (MSE, Mean Squared Error) y R-cuadrado (R2), y aprenderemos a envolverlo todo en un ejecutable. También haremos un fichero modelo ONNX con su EA.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.
preview
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos

La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte II): Creación de un EA de cuadrícula simple

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte II): Creación de un EA de cuadrícula simple

En este artículo, exploramos la estrategia de cuadrícula (grid) clásica, detallando su automatización mediante un Asesor Experto (EA) en MQL5 y analizando los resultados iniciales del backtest. Destacamos la necesidad de que la estrategia tenga una gran capacidad de retención y esbozamos planes para optimizar parámetros clave como la distancia, el takeProfit y el tamaño de los lotes en futuras entregas. La serie pretende mejorar la eficacia de las estrategias de negociación y su adaptabilidad a las distintas condiciones del mercado.
preview
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
preview
Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!
preview
Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional

Las máquinas de Boltzmann restringidas (RBM, Restrictive Boltzmann Machines) son, en el nivel básico, una red neuronal de dos capas que es competente en la clasificación no supervisada a través de la reducción de la dimensionalidad. Tomamos sus principios básicos y examinamos si lo rediseñamos y entrenamos de forma poco ortodoxa, podríamos obtener un filtro de señal útil.
preview
Trailing stop en el trading

Trailing stop en el trading

En este artículo, analizaremos el uso del trailing stop en el trading: su utilidad y eficacia, y cómo podemos utilizarlo. La eficacia de un trailing stop depende en gran medida de la volatilidad del precio y de la selección del nivel de stop loss. Para fijar un stop loss pueden usarse diversos métodos.
preview
Creación de un algoritmo de creación de mercado en MQL5

Creación de un algoritmo de creación de mercado en MQL5

¿Cómo funcionan los creadores de mercado? Consideremos esta cuestión y creemos un algoritmo primitivo de creación de mercado.
preview
Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5

Introducción a MQL5 (Parte 3): Estudiamos los elementos básicos de MQL5

En este artículo, seguiremos estudiando los fundamentos de la programación MQL5. Hoy veremos los arrays, las funciones definidas por el usuario, los preprocesadores y el procesamiento de eventos. Para una mayor claridad, todos los pasos de cada explicación irán acompañado de un código. Esta serie de artículos sienta las bases para el aprendizaje de MQL5, prestando especial atención a la explicación de cada línea de código.
preview
Desarrollo y prueba de los sistemas comerciales Aroon

Desarrollo y prueba de los sistemas comerciales Aroon

En este artículo, aprenderemos a construir un sistema comercial Aroon, aprendiendo asimilando los fundamentos de los indicadores y los pasos necesarios para crear un sistema comercial basado en el indicador Aroon. Una vez creado este sistema comercial, comprobaremos si puede ser rentable o necesita una mayor optimización.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 1): Funcionamiento conjunto de varias estrategias comerciales

Existen bastantes estrategias comerciales distintas. Para diversificar los riesgos y aumentar la estabilidad de los resultados comerciales, puede resultar útil utilizar varias estrategias que funcionen en paralelo. Pero si cada estrategia se implementa como un asesor independiente, se hace mucho más difícil gestionar su trabajo conjunto en una cuenta comercial. Para resolver este problema, es deseable implementar el funcionamiento de diferentes estrategias de negociación en un asesor.
preview
Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control

Introducción a MQL5 (Parte 2): Variables predefinidas, funciones comunes y operadores de flujo de control

En este artículo, seguiremos familiarizándonos con el lenguaje de programación MQL5. Esta serie de artículos no es solo un tutorial, sino también una puerta de entrada al mundo de la programación. ¿Qué hace especiales a estos artículos? Hemos procurado que las explicaciones sean sencillas para que los conceptos complejos resulten accesibles a todos. Aunque el material es accesible, para obtener los mejores resultados será necesario reproducir activamente todo lo que vamos a tratar. Solo así obtendremos el máximo beneficio de estos artículos.
preview
Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

En trabajos anteriores, hemos introducido el método del Decision Transformer y varios algoritmos derivados de él. Asimismo, hemos experimentado con distintos métodos de fijación de objetivos. Durante los experimentos, hemos trabajado con distintas formas de fijar objetivos, pero el aprendizaje de la trayectoria ya recorrida por parte del modelo siempre quedaba fuera de nuestra atención. En este artículo, queremos presentar un método que llenará este vacío.
preview
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.