DoEasy. Steuerung (Teil 11): WinForms Objekte — Gruppen, das WinForms-Objekt CheckedListBox
Der Artikel behandelt die Gruppierung von WinForms-Objekten und die Erstellung des Listenobjekts CheckBox-Objekte.
Verschaffen Sie sich einen Vorteil auf jedem Markt
Erfahren Sie, wie Sie jedem Markt, mit dem Sie handeln möchten, einen Schritt voraus sein können, unabhängig von dem derzeitigen Niveau Ihrer Fähigkeiten.
Kombinieren Sie fundamentale und technische Analysestrategien in MQL5 für Einsteiger
In diesem Artikel wird erörtert, wie sich Trendfolge- und Fundamentalprinzipien nahtlos in einen Expert Advisor integrieren lassen, um eine robustere Strategie zu entwickeln. In diesem Artikel wird gezeigt, wie einfach es für jedermann ist, mit MQL5 maßgeschneiderte Handelsalgorithmen zu erstellen und anzuwenden.
Entwicklung eines Replay Systems (Teil 39): Den Weg ebnen (III)
Bevor wir zur zweiten Stufe der Entwicklung übergehen, müssen wir einige Ideen überarbeiten. Wissen Sie, wie Sie MQL5 dazu bringen können, das zu tun, was Sie brauchen? Haben Sie jemals versucht, über das hinauszugehen, was in der Dokumentation enthalten ist? Wenn nicht, dann machen Sie sich bereit. Denn wir werden etwas tun, was die meisten Menschen normalerweise nicht tun.
Risikomanager für den manuellen Handel
In diesem Artikel wird detailliert beschrieben, wie man eine Risikomanager-Klasse für den manuellen Handel von Grund auf schreibt. Diese Klasse kann auch als Basisklasse für die Vererbung durch algorithmische Händler verwendet werden, die automatisierte Programme einsetzen.
DoEasy. Steuerung (Teil 6): Paneel-Steuerung, automatische Größenanpassung des Containers an den inneren Inhalt
In diesem Artikel werde ich meine Arbeit an dem WinForms-Objekt Panel fortsetzen und seine automatische Größenanpassung an die allgemeine Größe der Dock-Objekte, die sich innerhalb des Paneels befinden, implementieren. Außerdem werde ich die neuen Eigenschaften zum Objekt der Symbolbibliothek hinzufügen.
Grafiken in der Bibliothek DoEasy (Teil 100): Verbesserungen im Umgang mit erweiterten grafischen Standardobjekten
Im aktuellen Artikel werde ich offensichtliche Fehler bei der gleichzeitigen Behandlung von erweiterten (und Standard-) Grafikobjekten und Formularobjekten auf der Leinwand beseitigen sowie Fehler beheben, die bei dem im vorherigen Artikel durchgeführten Test entdeckt wurden. Der Artikel schließt diesen Teil der Bibliotheksbeschreibung ab.
DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche
Nun ist es an der Zeit, die grafische Oberfläche zu animieren, indem die Funktionsweise für die Interaktion von Objekten mit Nutzern und Objekten implementiert wird. Die neue Funktionsweise wird auch notwendig sein, damit komplexere Objekte korrekt funktionieren.
Algorithmen zur Optimierung mit Populationen: Saplings Sowing and Growing up (SSG)
Der Algorithmus Saplings Sowing and Growing up (SSG, Setzen, Säen und Wachsen) wurde von einem der widerstandsfähigsten Organismen der Erde inspiriert, der unter den verschiedensten Bedingungen überleben kann.
Kategorientheorie in MQL5 (Teil 10): Monoide Gruppen
Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier betrachten wir Monoidgruppen als Mittel zur Normalisierung von Monoidmengen, um sie über eine größere Bandbreite von Monoidmengen und Datentypen hinweg vergleichbar zu machen.
Risikobalance beim gleichzeitigen Handel von mehreren Handelsinstrumenten
Dieser Artikel ermöglicht es Anfängern, ein Skript für den Risikoausgleich beim gleichzeitigen Handel von mehreren Handelsinstrumenten von Grund auf zu schreiben. Darüber hinaus können erfahrene Nutzer neue Ideen für die Umsetzung ihrer Lösungen in Bezug auf die in diesem Artikel vorgeschlagenen Optionen erhalten.
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator
Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor für den automatisierten Handel, der den ZigZag-Indikator und den Awesome Oscillator als Signale verwendet.
Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES
Der Artikel behandelt eine Gruppe von Optimierungsalgorithmen, die als Evolutionsstrategien (ES) bekannt sind. Sie gehören zu den allerersten Populationsalgorithmen, die evolutionäre Prinzipien für die Suche nach optimalen Lösungen nutzen. Wir werden Änderungen an den herkömmlichen ES-Varianten vornehmen und die Testfunktion und die Prüfstandsmethodik für die Algorithmen überarbeiten.
Winkelbasierte Operationen für Händler
Dieser Artikel behandelt winkelbasierte Operationen. Wir werden uns Methoden zur Konstruktion von Winkeln und deren Verwendung beim Handel ansehen.
Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 3): Training Ihres eigenen LLM mit CPU
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
DoEasy. Steuerung (Teil 33): Vertikale Bildlaufleiste
In diesem Artikel werden wir die Entwicklung der grafischen Elemente der DoEasy-Bibliothek fortsetzen und das vertikale Scrollen von Formularobjekt-Steuerelementen sowie einige nützliche Funktionen und Methoden hinzufügen, die in Zukunft benötigt werden.
Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)
Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.
Die Gruppenmethode der Datenverarbeitung: Implementierung des Kombinatorischen Algorithmus in MQL5
In diesem Artikel setzen wir unsere Untersuchung der Algorithmenfamilie Group Method of Data Handling mit der Implementierung des Kombinatorischen Algorithmus und seiner verfeinerten Variante, dem Kombinatorischen Selektiven Algorithmus in MQL5 fort.
Klassische Strategien neu interpretieren: Rohöl
In diesem Artikel greifen wir eine klassische Rohölhandelsstrategie wieder auf, um sie durch den Einsatz von Algorithmen des überwachten maschinellen Lernens zu verbessern. Wir werden ein Modell der kleinsten Quadrate konstruieren, um zukünftige Brent-Rohölpreise auf der Grundlage der Differenz zwischen Brent- und WTI-Rohölpreisen vorherzusagen. Unser Ziel ist es, einen Frühindikator für künftige Veränderungen der Brent-Preise zu ermitteln.
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil I
In diesem Artikel werden wir verschiedene Methoden untersuchen, die in binären genetischen und anderen Populationsalgorithmen verwendet werden. Wir werden uns die Hauptkomponenten des Algorithmus, wie Selektion, Crossover und Mutation, und ihre Auswirkungen auf die Optimierung ansehen. Darüber hinaus werden wir Methoden der Datendarstellung und ihre Auswirkungen auf die Optimierungsergebnisse untersuchen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen
Der Handel mit mehreren Währungen ist nicht standardmäßig verfügbar, wenn ein Expertenberater über den Assistenten zusammengestellt wird. Wir untersuchen 2 mögliche Hacks, die Händler machen können, wenn sie ihre Ideen mit mehr als einem Symbol gleichzeitig testen wollen.
Entwicklung eines MQL5 RL-Agenten mit Integration von RestAPI (Teil 4): Organisieren von Funktionen in Klassen in MQL5
In diesem Artikel wird der Übergang von der prozeduralen Codierung zur objektorientierten Programmierung (OOP) in MQL5 mit Schwerpunkt auf der Integration mit der REST-API erörtert. Heute werden wir besprechen, wie HTTP-Anfragefunktionen (GET und POST) in Klassen organisiert werden können. Wir werden einen genaueren Blick auf das Refactoring von Code werfen und zeigen, wie isolierte Funktionen durch Klassenmethoden ersetzt werden können. Der Artikel enthält praktische Beispiele und Tests.
Nachrichtenhandel leicht gemacht (Teil 1): Erstellen einer Datenbank
Der Nachrichten basierte Handel kann kompliziert und erdrückend sein. In diesem Artikel werden wir die einzelnen Schritte zur Beschaffung von Nachrichtendaten erläutern. Außerdem werden wir mehr über den MQL5-Wirtschaftskalender und seine Möglichkeiten erfahren.
Entwicklung eines Replay Systems (Teil 33): Auftragssystem (II)
Heute werden wir das Auftragssystem weiterentwickeln. Wie Sie sehen werden, werden wir in großem Umfang wiederverwenden, was bereits in anderen Artikeln gezeigt wurde. Dennoch werden Sie in diesem Artikel eine kleine Belohnung erhalten. Zunächst werden wir ein System entwickeln, das mit einem echten Handelsserver verwendet werden kann, sowohl von einem Demokonto als auch von einem echten Konto. Wir werden die Plattform MetaTrader 5 ausgiebig nutzen, die uns von Anfang an alle notwendige Unterstützung bietet.
Entwicklung eines Replay Systems (Teil 40): Beginn der zweiten Phase (I)
Heute werden wir über die neue Phase des Replay/Simulator-Systems sprechen. In dieser Phase wird das Gespräch wirklich interessant und sehr inhaltsreich. Ich empfehle Ihnen dringend, den Artikel sorgfältig zu lesen und die darin enthaltenen Links zu nutzen. Dies wird Ihnen helfen, den Inhalt besser zu verstehen.
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.
Entwicklung eines Replay Systems (Teil 41): Beginn der zweiten Phase (II)
Wenn Ihnen bis zu diesem Punkt alles richtig erschien, bedeutet dies, dass Sie bei der Entwicklung von Anwendungen nicht wirklich an die langfristige Perspektive denken. Im Laufe der Zeit müssen Sie keine neuen Anwendungen mehr programmieren, sondern nur noch dafür sorgen, dass sie zusammenarbeiten. Schauen wir uns also an, wie man den Mauszeiger fertigstellt.
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil I)
In diesem Artikel wird ein einzigartiges Experiment vorgestellt, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Die Arbeit in dieser Richtung wird weitere Erkenntnisse darüber liefern, welche spezifischen Algorithmen ihre Suche mit den vom Nutzer festgelegten Koordinaten als Ausgangspunkt erfolgreich fortsetzen können und welche Faktoren ihren Erfolg beeinflussen.
DoEasy. Steuerung (Teil 5): Basisobjekt von WinForms, Paneel-Steuerelement, Parameter AutoSize
In diesem Artikel werde ich das Basisobjekt aller Bibliotheks-WinForms-Objekte erstellen und mit der Implementierung der AutoSize-Eigenschaft des Paneel-Objekts für WinForms beginnen – automatische Größenanpassung zum Anpassen des internen Inhalts des Objekts.
Developing a Replay System (Part 37): Paving the Path (I)
In this article, we will finally begin to do what we wanted to do much earlier. However, due to the lack of "solid ground", I did not feel confident to present this part publicly. Now I have the basis to do this. I suggest that you focus as much as possible on understanding the content of this article. I mean not simply reading it. I want to emphasize that if you do not understand this article, you can completely give up hope of understanding the content of the following ones.
Entwicklung eines Wiedergabesystems (Teil 42): Chart Trader Projekt (I)
Lassen Sie uns etwas Interessanteres schaffen. Ich möchte die Überraschung nicht verderben, also folgen Sie dem Artikel, um ein besseres Verständnis zu erhalten. Gleich zu Beginn dieser Serie über die Entwicklung des Replay/Simulator-Systems habe ich gesagt, dass die MetaTrader 5-Plattform sowohl in dem von uns entwickelten System als auch auf dem realen Markt auf die gleiche Weise verwendet werden soll. Es ist wichtig, dass dies richtig gemacht wird. Niemand möchte trainieren und lernen, mit einem Werkzeug zu kämpfen, während er während des Kampfes ein anderes nutzen muss.
Data label for time series mining (Part 6):Apply and Test in EA Using ONNX
This series of articles introduces several time series labeling methods, which can create data that meets most artificial intelligence models, and targeted data labeling according to needs can make the trained artificial intelligence model more in line with the expected design, improve the accuracy of our model, and even help the model make a qualitative leap!
Grafiken in der Bibliothek DoEasy (Teil 98): Verschieben von Angelpunkten erweiterter grafischer Standardobjekte
In diesem Artikel setze ich die Entwicklung erweiterter grafischer Standardobjekte fort und schaffe die Funktionen zum Verschieben von Angelpunkten zusammengesetzter grafischer Objekte unter Verwendung von Kontrollpunkten zur Verwaltung der Koordinaten der Angelpunkte des grafischen Objekts.
DoEasy. Steuerung (Teil 16): TabControl WinForms-Objekt — mehrere Reihen von Registerkarten-Kopfzeilen, Dehnung der Kopfzeilen zur Anpassung an den Container
In diesem Artikel werde ich die Entwicklung von TabControl fortsetzen und die Anordnung von Tabulatorüberschriften auf allen vier Seiten des Steuerelements für alle Modi der Einstellung der Größe der Überschriften implementieren: Normal, Fixed und Fill To Right (rechts auffüllend).
Ein Algorithmus zur Auswahl von Merkmalen, der energiebasiertes Lernen in reinem MQL5 verwendet
In diesem Artikel stellen wir die Implementierung eines Algorithmus zur Auswahl von Merkmalen vor, der in einer wissenschaftlichen Arbeit mit dem Titel „FREL: A stable feature selection algorithm“ vorgestellt wurde und auch als Merkmalsgewichtung als reguliertes energiebasiertes Lernen bezeichnet werden kann.
Entwicklung eines Replay Systems (Teil 45): Chart Trade Projekt (IV)
Der Hauptzweck dieses Artikels ist die Einführung und Erläuterung der Klasse C_ChartFloatingRAD. Wir haben einen Chart Trade-Indikator, der auf recht interessante Weise funktioniert. Wie Sie vielleicht bemerkt haben, haben wir immer noch eine relativ kleine Anzahl von Objekten im Chart, und dennoch erhalten wir die erwartete Funktionalität. Die im Indikator enthaltenen Werte können bearbeitet werden. Die Frage ist, wie ist das möglich? Dieser Artikel wird die Dinge etwas klarer machen.
Kausalanalyse von Zeitreihen mit Hilfe der Transferentropie
In diesem Artikel wird erörtert, wie die statistische Kausalität zur Ermittlung prädiktiver Variablen eingesetzt werden kann. Wir werden die Verbindung zwischen Kausalität und Transferentropie untersuchen und einen MQL5-Code zur Erkennung von direktionalen Informationsübertragungen zwischen zwei Variablen vorstellen.
Algorithmen zur Optimierung mit Populationen: Evolution sozialer Gruppen (ESG)
Wir werden das Prinzip des Aufbaus von Algorithmen mit mehreren Populationen besprechen. Als Beispiel für diese Art von Algorithmus werden wir uns den neuen nutzerdefinierten Algorithmus - Evolution of Social Groups (ESG) - ansehen. Wir werden die grundlegenden Konzepte, die Mechanismen der Populationsinteraktion und die Vorteile dieses Algorithmus analysieren und seine Leistung bei Optimierungsproblemen untersuchen.
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität
Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.
GIT: Was ist das?
In diesem Artikel werde ich ein sehr wichtiges Werkzeug für Entwickler vorstellen. Wenn Sie mit GIT nicht vertraut sind, lesen Sie diesen Artikel, um eine Vorstellung davon zu bekommen, was es ist und wie man es mit MQL5 verwendet.