Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)
Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
Previsão usando modelos ARIMA em MQL5
Neste artigo, continuamos a desenvolver a classe CArima para construir modelos ARIMA adicionando métodos de previsão intuitivos.
Desenvolvendo um sistema de Replay (Parte 26): Projeto Expert Advisor — Classe C_Terminal
Talvez já podemos começar a desenvolver um Expert Advisor a ser utilizado no replay / simulação. Mas não iremos criar qualquer coisa, este precisará ser algo um pouco mais bem elaborado. Mas não nos deixemos nos levar pelo grau de dificuldade neste primeiro momento. Temos de começar a fazer as coisas partindo de algum ponto. Caso contrário apenas iremos nos conformar, imaginando o qual difícil o desafio é, sem ao menos tentarmos de fato superar este obstáculo. Vida de programador de fato é isto: Encontrar um obstáculo e tentar superar ele, via estudo, testes e bastante pesquisa.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 25): Preparação para a próxima etapa
Aqui neste artigo iremos finalizar a primeira etapa do desenvolvimento do sistema de replay / simulador. Ao finalizar esta etapa, estou dizendo a você, caro leitor, que o sistema já estará em um estágio avançado o suficiente para que novas funcionalidades possam de fato serem implementadas. Isto a fim de tornar o sistema ainda mais elaborado e mais útil para efetuar estudos e desenvolver conceitos de analise de mercado.
Redes neurais de maneira fácil (Parte 43): Dominando habilidades sem função de recompensa
O problema com o aprendizado por reforço é a necessidade de definir uma função de recompensa, que pode ser complexa ou difícil de formular, porém abordagens baseadas no tipo de ação e na exploração do ambiente que permitem que as habilidades sejam aprendidas sem uma função de recompensa explícita estão sendo exploradas para resolver esse problema.
Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução
A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)
Aqui estamos retirando o bloqueio de simulação baseada na plotagem LAST, e adicionando um ponto de entrada para este tipo de simulação. Agora prestem atenção ao fato de que todo o funcionamento, irá se basear no sistema do forex. Sendo que a única diferença, aqui nesta rotina, é o fato de que estaremos separando uma simulação BID, de uma LAST. Mas a questão de randomização do tempo e a sua correção para ser utilizado pela classe C_Replay, é a mesma em ambos modos de simulação. Isto é uma coisa boa, já que se modificarmos um dos modos, o outro irá se beneficiar, pelo menos no que rege a parte do tempo entre os tickets
Algoritmo de recompra: Simulação de negociação em várias moedas
Neste artigo, criaremos um modelo matemático para simular a precificação em várias moedas e concluiremos o estudo, que comecei no artigo anterior, sobre o princípio de diversificação como parte da busca por mecanismos para aumentar a eficiência da negociação.
Teoria das Categorias em MQL5 (Parte 8): Monoides
Esse artigo continua a série sobre a implementação da teoria da categoria em MQL5. Aqui, apresentamos os monoides como um domínio (conjunto) que distingue a teoria da categoria de outros métodos de classificação de dados ao incorporar regras e um elemento de equivalência.
Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente
Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.
Algoritmo de recompra: modelo matemático para aumentar a eficiência
Neste artigo, usaremos o algoritmo de recompra como um guia para um entendimento mais profundo da eficiência dos sistemas de negociação e começaremos a trabalhar com os princípios gerais de aumentar a eficiência de negociação usando matemática e lógica, bem como aplicar os métodos mais inovadores para aumentar a eficiência no contexto de usar qualquer sistema de negociação.
Negociação automatizada em grade usando ordens pendentes de stop na Bolsa de Moscou (MOEX)
Uso da abordagem de negociação em grade com ordens pendentes de stop em um Expert Advisor usando a linguagem de estratégias de negociação MQL5 para o MetaTrader 5 na Bolsa de Valores de Moscou (MOEX). Ao negociar no mercado, uma das estratégias mais simples é uma grade de ordens projetada para "capturar" o preço de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 23): FOREX (IV)
A criação, agora, é efetuada no mesmo ponto que fazemos a conversão dos tickets em barras. Então se algo vim a dar errado durante a conversão, iremos logo notar o erro. Pois o mesmo código que lança as barras de 1 minuto no gráfico, quando fazemos um avanço rápido, também é utilizando pelo sistema de posicionamento, e também é usado para lançar as barras durante o avanço normal. Ou seja, agora o código responsável por tal tarefa, não esta mais sendo duplicado em ponto algum. Desta forma, já temos um sistema bem mais adequado, tanto para manutenção, quanto para melhorias.
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados
Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 22): FOREX (III)
Para quem ainda não entendeu a diferença entre o mercado de bolsa e o de forex, apesar de este já ser o terceiro artigo em que estou abordando isto. Devo deixar claro, que a grande diferença, é o fato de que no forex não existe, ou melhor, não nos é informado algumas coisas a respeito do que aconteceu de fato na negociação.
Experimentos com redes neurais (Parte 5): Normalização de parâmetros de entrada para alimentar a rede neural
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
Desenvolvendo um sistema de Replay - Simulação de mercado ( Parte 21): FOREX (II)
Vamos continuar a montagem do sistema para cobrir o mercado de FOREX. Então para resolver este problema, precisaríamos primeiramente, declarar o carregamento dos tickets, antes de fazer o carregamento das barras previas. Isto resolve o problema, mas ao mesmo tempo força o usuário, a um tipo de modelagem do arquivo de configuração, que ao meu ver não faz muito sentido. O motivo é que, ao desenvolver a programação, responsável por analisar e executar o que esta no arquivo de configuração, podemos permitir ao usuário, declarar as coisas em qualquer ordem.
Estratégia de negociação no indicador de reconhecimento apurado de velas Doji
O indicador baseado em metabarras detecta mais velas do que o clássico baseado em barras únicas. Vamos ver se ele oferece benefícios reais na negociação automatizada.
Encontrando padrões de velas usando MQL5
Neste artigo, falaremos sobre como detectar automaticamente padrões de velas usando MQL5.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)
intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 19): Ajustes necessários
O que de fato vamos fazer aqui, é preparar o terreno, de forma que quando for preciso adicionar algumas novas coisas ao código, isto aconteça de forma suave e tranquila. O código atual ainda não consegue cobrir ou dar cabo de algumas coisas, que serão necessárias para um avanço significativo. Precisamos que tudo seja construído de maneira que o esforço de implementação de algumas coisas seja o menor possível. Se isto for feito adequadamente teremos a possibilidade de ter um sistema realmente bastante versátil. Sendo capaz de se adaptar muito facilmente a qualquer situação que for preciso ser coberta.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 18): Tiquete e mais tiquetes (II)
Neste, fica extremamente claro, que as métricas, estão muito longe, do tempo ideal de confecção das barras de 1 minuto. Assim então, a primeira coisa que de fato iremos corrigir, será justamente isto. Corrigir a questão da temporização, não é algo complicado. Por mais incrível que possa parecer, é na verdade até bem simples de ser feito. Porém não fiz a correção no artigo anterior, por que lá o desejo era explicar, como fazer para jogar os dados de tickets, que estavam sendo usados para gerar as barras de 1 minuto no gráfico, para dentro da janela de observação de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)
Aqui vamos começar a ver como implementar algo realmente bem interessante e curioso. Mas ao mesmo tempo extremamente complicado por conta de algumas questões que muitos confundem. Mas pior do que as confundir, é o fato de que alguns operadores que se dizem profissionais, não fazem ideia a importância de tais conceitos no mercado de capital. Sim, apesar do foco aqui ser programação, entender algumas questões que envolvem operações em mercados, é de extrema valia para o que iremos começar a implementar aqui.
Desenvolvimento de um sistema de negociação baseado no indicador Fibonacci
Esta é a continuação de uma série de artigos nos quais aprendemos como construir sistemas de negociação com base nos indicadores mais populares. Desta vez, cobriremos o indicador Fibonacci. Veremos como escrever um programa baseado nos sinais deste indicador.
Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)
Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes
Precisamos nos organizar melhor. O código está crescendo e se não o organizarmos agora, será impossível fazer isto depois. Então agora vamos dividir para conquistar. O fato de que o MQL5, nos permite usar classes, nos ajudará nesta tarefa. Mas para fazer isto é preciso que você tenha algum conhecimento sobre algumas coisas envolvidas nas classes. E talvez a que mais deixe, aspirantes e iniciantes perdidos seja a herança. Então neste artigo, irei de forma prática e simples como fazer uso de tais mecanismos.
Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço
Nos modelos de aprendizado por reforço discutidos anteriormente, usamos diferentes variantes de redes convolucionais, que são capazes de identificar diferentes corpos nos dados brutos. A principal vantagem das redes convolucionais é sua capacidade de identificar objetos independentemente de sua localização. No entanto, as redes convolucionais nem sempre são capazes de lidar com as diversas deformações e ruídos que os objetos apresentam. Mas esses problemas podem ser resolvidos pelo modelo relacional.
Experimentos com redes neurais (Parte 4): Padrões
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 15): Nascimento do SIMULADOR (V) - RANDOM WALK
Neste artigo iremos finalizar a fase, onde estamos desenvolvendo o simulador para o nosso sistema. O principal proposito aqui será ajustar o algoritmo visto no artigo anterior. Tal algoritmo tem como finalidade criar o movimento de RANDOM WALK. Por conta disto, o entendimento do conteúdo dos artigos anteriores, é primordial para acompanhar o que será explicado aqui. Se você não acompanhou o desenvolvimento do simulador, aconselho você a ver esta sequência desde o inicio. Caso contrário, poderá ficar perdido no que será explicado aqui.
Desenvolvimento de um sistema de negociação baseado no Índice de Facilitação do Mercado de Bill Williams
Este é um novo artigo de uma série na qual aprendemos a desenvolver sistemas de negociação baseados em indicadores técnicos conhecidos. Neste novo artigo, analisamos o Índice de Facilitação do Mercado (Market Facilitation Index, MFI), criado por Bill Williams.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 14): Nascimento do SIMULADOR (IV)
Neste artigo continuaremos a fase de desenvolvimento do simulador. Mas agora, vamos ver como criar de fato um movimento do tipo RANDOM WALK. Este tipo de movimentação é muito interessante, pois tudo envolvido no mercado de capitais tem como base este tipo de movimentação. Além do mais você vai começar a entender alguns conceitos importantes para quem faz estáticas de mercado.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)
Aqui iremos dar uma leve otimizada nas coisas. Isto para facilitar o que iremos fazer no próximo artigo. Mas também irei explicar como você pode visualizar o que o simulador está gerando em termos de aleatoriedade.
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação
A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
Redes neurais de retropropagação em matrizes MQL5
Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.
Alan Andrews e suas técnicas de análise de séries temporais
Alan Andrews é um dos mais renomados "educadores" do mundo do trading atual, no campo da análise de mercado. Suas "forquilhas" estão presentes em praticamente todos os programas modernos de análise de cotações. No entanto, a maioria dos traders utiliza apenas uma pequena fração das possibilidades oferecidas por essa ferramenta. O curso original de Andrews abrange não apenas a descrição das forquilhas (embora sejam o aspecto principal), mas também outras diretrizes úteis. Este artigo apresenta uma visão dessas incríveis técnicas de análise de gráficos que Andrews ensinou em seu curso original. Atenção: muitas imagens serão utilizadas.
Esperança moral na negociação
Este artigo trata da esperança moral. Veremos vários exemplos de como ela é aplicada na negociação e quais resultados podem ser obtidos com ela.
Exemplo de criação da estratégia de negociação abrangente Owl
Minha estratégia se baseia em fundamentos clássicos de negociação e no aprimoramento de indicadores amplamente usados em todos os tipos de mercados. Na verdade, trata-se de uma ferramenta pronta para trabalhar integralmente com a nova estratégia de negociação lucrativa que proponho.
Como escolher um Expert Advisor: Vinte caraterísticas de um robô de baixa qualidade
Neste artigo, iremos responder à pergunta de como escolher o Expert Advisor correto. Quais são os mais adequados para o nosso portfólio e como podemos filtrar a maioria dos robôs de negociação disponíveis no mercado? Este artigo apresenta vinte caraterísticas evidentes de um EA de baixa qualidade. Ele ajudará você a tomar decisões mais informadas e criar uma coleção de EAs lucrativos.
Teste e otimização de estratégias para opções binárias no MetaTrader 5
Testamos e otimizamos estratégias de opções binárias no MetaTrader 5.