English Русский Español Deutsch 日本語
preview
Implementação do teste aumentado de Dickey-Fuller no MQL5

Implementação do teste aumentado de Dickey-Fuller no MQL5

MetaTrader 5Exemplos | 19 junho 2024, 14:07
349 0
Francis Dube
Francis Dube

Introdução

O teste aumentado de Dickey-Fuller (Augmented Dickey-Fuller, ADF) é uma técnica comum usada para avaliar se uma série temporal é estacionária ou não. Embora seja bem conhecido que séries temporais financeiras, por natureza, não são estacionárias. Muitos métodos estatísticos que se beneficiam da estacionariedade normalmente exigem que conjuntos de dados não estacionários sejam transformados de alguma forma antes da análise. O teste ADF pode ser utilizado para avaliar a eficácia dessas transformações em garantir a estacionariedade. Na avaliação da cointegração de séries, também são usados testes de estacionariedade. Esses testes são úteis no desenvolvimento de estratégias de negociação que aproveitam as diferenças nos preços de instrumentos financeiros correspondentes. Neste artigo, apresentaremos a implementação do teste ADF em puro MQL5 e demonstraremos sua aplicação para detectar símbolos cointegrados no MetaTrader 5.


Teste ADF

Simplificando, o teste ADF é uma verificação de hipótese que nos permite determinar se uma característica específica dos dados observados é estatisticamente significativa. Neste caso, a característica verificada é a estacionariedade da série. Uma hipótese estatística é uma suposição feita sobre um conjunto de dados representado por uma amostra. Podemos conhecer a verdade real apenas trabalhando com o conjunto completo de dados. Normalmente, por diversas razões, isso não é possível. Assim, uma amostra do conjunto de dados é testada para fazer suposições sobre todo o conjunto de dados. É importante lembrar que a veracidade de uma hipótese estatística nunca pode ser conhecida com certeza ao trabalhar com amostras. Podemos apenas inferir se a suposição é verdadeira ou falsa.

Hipótese alternativa de que a série temporal não tem uma raiz unitária.

No teste ADF, consideramos dois cenários:

  • Hipótese nula de que há uma raiz unitária na série temporal.
  • Hipótese alternativa de que a série temporal não tem uma raiz unitária.

Na análise de séries temporais, uma raiz unitária é uma característica específica de um conjunto sequencial de dados. Imagine uma pessoa caminhando pela rua com seu cachorro. Provavelmente, a pessoa seguirá em linha reta até seu destino, enquanto o cachorro frequentemente se desviará para cheirar algo ou perseguir um pequeno roedor que chamou sua atenção. No entanto, eventualmente, ele seguirá seu dono. Se traçarmos o caminho do cachorro, podemos observar algum tipo de oscilação. O cachorro, seguido pela pessoa, se afasta, mas eventualmente retorna à direção geral esperada.

Uma posição qualquer no caminho do cachorro representa o valor da variável em um determinado momento. "Se avaliarmos esses valores, é provável que eles permaneçam dentro de um intervalo específico ao redor de uma tendência central. As propriedades estatísticas não mudam significativamente com o tempo. Tal série não terá uma raiz unitária. Agora imagine se o homem estivesse passeando com um cachorro não treinado pela mesma rua. Provavelmente, o cachorro fugiria e nunca mais voltaria para o dono. Os valores associados ao caminho percorrido por esse cachorro mudariam de forma imprevisível. Essa série teria uma raiz unitária.

Série com mudança de nível

O conceito de raiz unitária vem da equação característica de um processo estocástico. Um processo estocástico é uma sequência de variáveis, indexadas no tempo, que descrevem um sistema que evolui de maneira aleatória. A equação característica de um processo estocástico reflete as propriedades do sistema. Uma raiz unitária é uma solução da equação característica igual a 1. Se um processo tem uma raiz unitária, isso significa que choques ou efeitos aleatórios têm um impacto permanente no processo. Tal sistema é modelado por efeitos aleatórios e valores defasados. Isso significa que ela é autoregressiva.

Por esse motivo, o teste ADF usa um modelo de regressão para verificar a presença de uma raiz unitária. A forma mais comum do modelo é representada pela equação abaixo.

Fórmula autorregressiva

onde:

  • Y - primeira diferença da série temporal
  •  a - termo constante
  •  b - coeficiente do nível defasado da série temporal
  •  x - coeficiente da série temporal (t)
  •  V - coeficientes das primeiras diferenças defasadas
  •  E - termo residual

No teste, o foco principal está no coeficiente b. Se b = 0, há uma raiz unitária; caso contrário, se "b" < 0, a série temporal é estacionária. A estatística ADF é calculada com base no valor estimado de b e seu erro padrão. Ela é comparada com os valores críticos da distribuição Dickey-Fuller. Se a estatística ADF for mais negativa que o valor crítico em um determinado nível de significância, a hipótese nula da raiz unitária é rejeitada. Isso significa que a série é estacionária.


Implementação

Para garantir a precisão da nossa implementação, vamos usar uma implementação existente do teste ADF em Python como referência. No pacote Python 'statsmodels' a função adfuller é utilizada para realizar o teste ADF.

adfuller(x, maxlag: 'int | None' = None, regression='c', autolag='AIC', store=False, regresults=False)


A função primeiro estima os parâmetros do modelo autorregressivo da série de entrada usando o método dos mínimos quadrados comum. A estatística do teste é calculada com base nos parâmetros estimados. Essa estatística é usada para calcular o valor p. Da tabela de distribuição, são obtidos três valores críticos que representam os níveis de confiança. Finalmente, a estatística do teste pode ser comparada com qualquer um desses valores para determinar se a série é estacionária ou não.

Com base nessa revisão, precisamos implementar três componentes importantes. Primeiro, um modelo de regressão de mínimos quadrados comum. Este é provavelmente o componente mais crucial, pois qualquer erro aqui será propagado para outras etapas do teste. O modelo será usado para determinar o modelo autoregressivo mais adequado para a série analisada. Além dos parâmetros do modelo, também precisamos calcular suas várias propriedades, como o critério de informação de Akaike e os critérios de informação bayesianos.

O segundo componente diz respeito ao cálculo do valor p. O valor p é determinado pela estatística do teste, obtida com base na t-estatística do modelo autoregressivo otimizado. A t-estatística é uma medida usada para determinar se há uma diferença significativa entre as médias de dois grupos. Ela é calculada dividindo a diferença entre as médias da amostra pelo erro padrão da diferença. Nesse contexto, a t-estatística é calculada dividindo os parâmetros do modelo pelo erro padrão do modelo. O método utilizado para calcular o valor p foi proposto por D. G. MacKinnon e, portanto, é chamado de método aproximado de p-valor de MacKinnon. Ele fornece uma aproximação do valor p associado aos valores críticos dos testes estatísticos.

O último componente necessário para completar o teste ADF é o cálculo dos valores críticos. Esses valores são obtidos com base nas aproximações apresentadas no artigo científico de MacKinnon.

//+------------------------------------------------------------------+
//| Ordinary least squares class                                     |
//+------------------------------------------------------------------+
class OLS
  {
private:
   matrix m_exog,               //design matrix
          m_pinv,               //pseudo-inverse of matrix
          m_cov_params,         //covariance of matrix
          m_m_error,            //error matrix
          m_norm_cov_params;    //normalized covariance matrix
   vector m_endog,              //dependent variables
          m_weights,            //weights
          m_singularvalues,     //singular values of solution
          m_params,             //coefficients of regression model(solution)
          m_tvalues,            //test statistics of model
          m_bse,                //standard errors of model
          m_resid;              //residuals of model
   ulong  m_obs,                //number of observations
          m_model_dof,          //degrees of freedom of model
          m_resid_dof,          //degrees of freedom of residuals
          m_kconstant,          //number of constants
          m_rank;               //rank of design matrix
   double m_aic,                //Akiake information criteria
          m_bic,                //Bayesian information criteria
          m_scale,              //scale of model
          m_llf,                //loglikelihood of model
          m_sse,                //sum of squared errors
          m_rsqe,               //r-squared of model
          m_centeredtss,        //centered sum of squares
          m_uncenteredtss;      //uncentered sum of squares
   uint              m_error;              //error flag
   // private methods
   ulong             countconstants(void);
   void              scale(void);
   void              sse(void);
   void              rsqe(void);
   void              centeredtss(void);
   void              uncenteredtss(void);
   void              aic(void);
   void              bic(void);
   void              bse(void);
   void              llf(void);
   void              tvalues(void);
   void              covariance_matrix(void);


public:
   //constructor
                     OLS(void);
   //destructor
                    ~OLS(void);
   //public methods
   bool              Fit(vector &y_vars,matrix &x_vars);
   double            Predict(vector &inputs);
   double            Predict(double _input);
   //get properties of OLS model
   ulong             ModelDOF(void) { if(m_error) return 0; else return m_model_dof;}
   ulong             ResidDOF(void) { if(m_error) return 0; else return m_resid_dof;}
   double            Scale(void)  { if(m_error) return EMPTY_VALUE; else return m_scale;    }
   double            Aic(void)    { if(m_error) return EMPTY_VALUE; else return m_aic;      }
   double            Bic(void)    { if(m_error) return EMPTY_VALUE; else return m_bic;    }
   double            Sse(void)    { if(m_error) return EMPTY_VALUE; else return m_sse;    }
   double            Rsqe(void)   { if(m_error) return EMPTY_VALUE; else return m_rsqe;   }
   double            C_tss(void)  { if(m_error) return EMPTY_VALUE; else return m_centeredtss;}
   double            Loglikelihood(void) { if(m_error) return EMPTY_VALUE; return m_llf; }
   vector            Tvalues(void) { if(m_error) return m_m_error.Col(0); return m_tvalues; }
   vector            Residuals(void) { if(m_error) return m_m_error.Col(0); return m_resid; }
   vector            ModelParameters(void) { if(m_error) return m_m_error.Col(0); return m_params; }
   vector            Bse(void) { if(m_error) return m_m_error.Col(0);  return m_bse; }
   matrix            CovarianceMatrix(void) { if(m_error) return m_m_error; return m_cov_params; }
  };

OLS.mqh contém a definição da classe OLS, que representa o modelo de regressão de mínimos quadrados comum. A classe possui vários métodos públicos. O primeiro deles é o método Fit() — o primeiro método que os usuários devem chamar após criar uma instância dessa classe. Ele requer um vetor e uma matriz como entradas. O vetor y_vars deve ser preenchido com valores dependentes, enquanto x_vars é a matriz de design. Fit() retornará true se for executado com sucesso, após o que qualquer outro método público pode ser chamado. Todos esses métodos retornam uma propriedade específica do modelo calculado. Essas propriedades estão listadas na tabela abaixo.

Tipo de dados retornados
 Valor em caso de erro Método
 Descrição
ulong
0
ModelDOF()
graus de liberdade do modelo
ulong
0
ResidDOF()
graus de liberdade dos resíduos do modelo
double
EMPTY_VALUE
Scale()
variância do erro, indicando a variabilidade da variável dependente não explicada pelas variáveis independentes
double
EMPTY_VALUE
Aic()
critério de informação de Akaike
double
EMPTY_VALUE
 Bic()
critério de informação bayesiano
double
EMPTY_VALUE
Sse()
soma dos quadrados dos erros do modelo
double
EMPTY_VALUE
Rsqe()
coeficiente de determinação do modelo (R-quadrado)
double
EMPTY_VALUE
C_tss()
soma total dos quadrados centrados em torno da média
double
EMPTY_VALUE
Loglikelihood()
função de verossimilhança para o modelo OLS
vector
vector of empty values
Tvalues()
fornece a t-estatística para a estimativa de cada parâmetro do modelo
vector
vector of empty values
Residuals()
resíduos do modelo, ou seja, a diferença entre os valores previstos e os reais
vector
vector of empty values
Bse()
erros padrão das estimativas dos parâmetros
matrix
matriz de valores vazios
CovarianceMatrix()
matriz que exibe as variâncias das variáveis e as covariâncias entre elas

 O método `Predict()` tem duas sobrecargas que diferem nos tipos de entrada. Pode ser um vetor ou um valor escalar do tipo `double`. Ambos retornam uma previsão considerando a(s) nova(s) variável(is) independente(s).

A próxima parte da nossa implementação passa para o arquivo `ADF.mqh`. O arquivo conterá uma coleção de definições de funções relacionadas ao teste ADF. Uma dessas funções é a `adfuller()`. Incluímos `OLS.mqh` para a classe OLS, `Math.mqh` da biblioteca padrão, e `Specialfunctions.mqh` da biblioteca Alglib.

//+------------------------------------------------------------------+
//|                                                          ADF.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#include<Math\Stat\Math.mqh>
#include<Math\Alglib\specialfunctions.mqh>
#include<OLS.mqh>

A próxima parte da nossa implementação passa para o arquivo `ADF.mqh`. O arquivo conterá uma coleção de definições de funções, assim como a definição da classe `CAdf`. Incluímos `OLS.mqh` para a classe OLS, `Math.mqh` da biblioteca padrão, e `Specialfunctions.mqh` da biblioteca Alglib. `ADF.mqh` começa com a definição de algumas enumerações. `ENUM_INFO_CRIT` representa as opções disponíveis ao definir o modelo de regressão ideal para uma série específica. Ele define as métricas usadas para selecionar o modelo correto. `ENUM_TRIM`, `ENUM_ORIGINAL`, `ENUM_HAS_CONST` e `ENUM_TREND` são usados ao construir a matriz de design. 

//+------------------------------------------------------------------+
//| Information criterion                                            |
//+------------------------------------------------------------------+
enum ENUM_INFO_CRIT
  {
   INFO_NONE=0,
   INFO_AIC,
   INFO_BIC
  };
//+------------------------------------------------------------------+
//| Options for  trimming invalid observations                       |
//+------------------------------------------------------------------+
enum ENUM_TRIM
  {
   TRIM_NONE=0,
   TRIM_FORWARD,
   TRIM_BACKWARD,
   TRIM_BOTH
  };
//+------------------------------------------------------------------+
//| options for how to handle original data set                      |
//+------------------------------------------------------------------+

enum ENUM_ORIGINAL
  {
   ORIGINAL_EX=0,
   ORIGINAL_IN,
   ORIGINAL_SEP
  };
//+------------------------------------------------------------------+
//| Constant and trend used in regression model                      |
//+------------------------------------------------------------------+

enum ENUM_TREND
  {
   TREND_NONE=0,
   TREND_CONST_ONLY,
   TREND_LINEAR_ONLY,
   TREND_LINEAR_CONST,
   TREND_QUAD_LINEAR_CONST
  };
//+------------------------------------------------------------------+
//| Options for how to handle existing constants                     |
//+------------------------------------------------------------------+

enum ENUM_HAS_CONST
  {
   HAS_CONST_RAISE=0,
   HAS_CONST_SKIP,
   HAS_CONST_ADD
  };


O método `Adfuller()` retorna um valor booleano, indicando a execução bem-sucedida do teste, e não a estacionariedade da série. Em caso de erro, retorna `false`. Qualquer erro é acompanhado por mensagens detalhadas no log do terminal. Aceita um array da série analisada como entrada. Outros argumentos da função são opcionais. Na maioria dos casos, os usuários não precisarão se preocupar com esses parâmetros. A chamada da função com os parâmetros mencionados deve ser suficiente.

//+---------------------------------------------------------------------+
//|Class CAdf                                                           |
//|   encapsulates the the Augmented Dickey Fuller Test for Stationarity|
//+---------------------------------------------------------------------+

class CAdf
{
 private:
  double m_adf_stat,  //adf statistic
         m_bestic,    //optimal bic or aic
         m_pvalue;    //p-value
  ulong  m_usedlag;   //lag used for optimal reg model
  vector m_critvals;  //estimated critical values
  OLS    *m_ols;      //internal ordinary least squares reg model
   // private methods
 bool   gridsearch(vector &LHS, matrix &RHS, ulong f_lag, ulong l_lag,ENUM_INFO_CRIT crit, double &b_ic, ulong &best_lag);
 bool   lagmat(matrix &in,matrix &out[],ulong mlag,ENUM_TRIM trim=TRIM_BOTH,ENUM_ORIGINAL original=ORIGINAL_IN);
 bool   prepare_lhs_rhs(vector &lhs, matrix &rhs, double &in[], double &in_diff[],ulong lag);
 
 
 public:
  CAdf(void);
  ~CAdf(void);
  
 bool Adfuller(double &array[],ulong max_lag = 0,ENUM_TREND trend = TREND_CONST_ONLY, ENUM_INFO_CRIT autolag=INFO_AIC);
 vector CriticalValues(void) {  return m_critvals; }
 double AdfStatistic(void)   {  return m_adf_stat; }
 double Pvalue(void)         {  return m_pvalue;   }
};

`max_lag` define o número máximo de defasagens do modelo de regressão. `trend` é uma enumeração que permite especificar a tendência e a constante na configuração do modelo de regressão. `autolag` determina qual métrica é usada para selecionar o modelo ideal que melhor descreve a série de entrada. No `Adfuller()`, os parâmetros da função são primeiro verificados antes de serem usados para construir as variáveis dependentes e independentes do modelo de regressão.

São selecionadas várias opções dessa matriz de design original para determinar qual delas se ajusta melhor à série de entrada. Os critérios usados para selecionar o melhor modelo dependem do valor do parâmetro `autolag`. A busca é realizada pela função `gridsearch()`.

Depois que o melhor modelo é encontrado, a propriedade de atraso desse modelo, relacionada ao número de colunas incluídas na matriz de design original, é usada para determinar o modelo ideal, cujos parâmetros serão avaliados para determinar a estacionariedade da série. A primeira t-estatística do modelo OLS ideal determina a estatística do teste ADF. O valor p é calculado pela função `mackinnop()`. A chamada do método `Pvalue()` retorna o valor p correspondente.

//+----------------------------------------------------------------------+
//| calculates MacKinnon's approximate p-value for a given test statistic|
//+----------------------------------------------------------------------+
double mackinnonp(double teststat, ENUM_TREND trend = TREND_CONST_ONLY,ulong nseries = 1, uint lags =0)
  {
   vector small_scaling =  {1, 1, 1e-2};
   vector large_scaling =  {1, 1e-1, 1e-1, 1e-2};

   double tau_star_nc []= {-1.04, -1.53, -2.68, -3.09, -3.07, -3.77};
   double tau_min_nc []= {-19.04, -19.62, -21.21, -23.25, -21.63, -25.74};
   double tau_max_nc []= {double("inf"), 1.51, 0.86, 0.88, 1.05, 1.24};
   double tau_star_c []= {-1.61, -2.62, -3.13, -3.47, -3.78, -3.93};
   double tau_min_c []= {-18.83, -18.86, -23.48, -28.07, -25.96, -23.27};
   double tau_max_c []= {2.74, 0.92, 0.55, 0.61, 0.79, 1};
   double tau_star_ct []= {-2.89, -3.19, -3.50, -3.65, -3.80, -4.36};
   double tau_min_ct []= {-16.18, -21.15, -25.37, -26.63, -26.53, -26.18};
   double tau_max_ct []= {0.7, 0.63, 0.71, 0.93, 1.19, 1.42};
   double tau_star_ctt []= {-3.21, -3.51, -3.81, -3.83, -4.12, -4.63};
   double tau_min_ctt []= {-17.17, -21.1, -24.33, -24.03, -24.33, -28.22};
   double tau_max_ctt []= {0.54, 0.79, 1.08, 1.43, 3.49, 1.92};

   double tau_nc_smallp [][3]=
     {
        {0.6344, 1.2378, 3.2496},
        {1.9129, 1.3857, 3.5322},
        {2.7648, 1.4502, 3.4186},
        {3.4336, 1.4835, 3.19},
        {4.0999, 1.5533, 3.59},
        {4.5388, 1.5344, 2.9807}
     };

   double tau_c_smallp [][3]=
     {
        {2.1659, 1.4412, 3.8269},
        {2.92, 1.5012, 3.9796},
        {3.4699, 1.4856, 3.164},
        {3.9673, 1.4777, 2.6315},
        {4.5509, 1.5338, 2.9545},
        {5.1399, 1.6036, 3.4445}
     };

   double tau_ct_smallp [][3]=
     {
        {3.2512, 1.6047, 4.9588},
        {3.6646, 1.5419, 3.6448},
        {4.0983, 1.5173, 2.9898},
        {4.5844, 1.5338, 2.8796},
        {5.0722, 1.5634, 2.9472},
        {5.53, 1.5914, 3.0392}
     };

   double tau_ctt_smallp [][3]=
     {
        {4.0003, 1.658, 4.8288},
        {4.3534, 1.6016, 3.7947},
        {4.7343, 1.5768, 3.2396},
        {5.214, 1.6077, 3.3449},
        {5.6481, 1.6274, 3.3455},
        {5.9296, 1.5929, 2.8223}
     };



   double tau_nc_largep [][4]=
     {
        {0.4797, 9.3557, -0.6999, 3.3066},
        {1.5578, 8.558, -2.083, -3.3549},
        {2.2268, 6.8093, -3.2362, -5.4448},
        {2.7654, 6.4502, -3.0811, -4.4946},
        {3.2684, 6.8051, -2.6778, -3.4972},
        {3.7268, 7.167, -2.3648, -2.8288}
     };

   double tau_c_largep [][4]=
     {
        {1.7339, 9.3202, -1.2745, -1.0368},
        {2.1945, 6.4695, -2.9198, -4.2377},
        {2.5893, 4.5168, -3.6529, -5.0074},
        {3.0387, 4.5452, -3.3666, -4.1921},
        {3.5049, 5.2098, -2.9158, -3.3468},
        {3.9489, 5.8933, -2.5359, -2.721}
     };

   double tau_ct_largep [][4]=
     {
        {2.5261, 6.1654, -3.7956, -6.0285},
        {2.85, 5.272, -3.6622, -5.1695},
        {3.221, 5.255, -3.2685, -4.1501},
        {3.652, 5.9758, -2.7483, -3.2081},
        {4.0712, 6.6428, -2.3464, -2.546},
        {4.4735, 7.1757, -2.0681, -2.1196}
     };

   double tau_ctt_largep [][4]=
     {
        {3.0778, 4.9529, -4.1477, -5.9359},
        {3.4713, 5.967, -3.2507, -4.2286},
        {3.8637, 6.7852, -2.6286, -3.1381},
        {4.2736, 7.6199, -2.1534, -2.4026},
        {4.6679, 8.2618, -1.822, -1.9147},
        {5.0009, 8.3735, -1.6994, -1.6928}
     };


   vector maxstat,minstat,starstat;
   matrix tau_smallps, tau_largeps;

   switch(trend)
     {
      case TREND_NONE:
         if(!maxstat.Assign(tau_max_nc) ||
            !minstat.Assign(tau_min_nc) ||
            !starstat.Assign(tau_star_nc)||
            !tau_smallps.Assign(tau_nc_smallp)||
            !tau_largeps.Assign(tau_nc_largep))
           {
            Print("assignment error :", GetLastError());
            return double("inf");
           }
         else
            break;
      case TREND_CONST_ONLY:
         if(!maxstat.Assign(tau_max_c) ||
            !minstat.Assign(tau_min_c) ||
            !starstat.Assign(tau_star_c)||
            !tau_smallps.Assign(tau_c_smallp)||
            !tau_largeps.Assign(tau_c_largep))
           {
            Print("assignment error :", GetLastError());
            return double("inf");
           }
         else
            break;
      case TREND_LINEAR_CONST:
         if(!maxstat.Assign(tau_max_ct) ||
            !minstat.Assign(tau_min_ct) ||
            !starstat.Assign(tau_star_ct)||
            !tau_smallps.Assign(tau_ct_smallp)||
            !tau_largeps.Assign(tau_ct_largep))
           {
            Print("assignment error :", GetLastError());
            return double("inf");
           }
         else
            break;
      case TREND_QUAD_LINEAR_CONST:
         if(!maxstat.Assign(tau_max_ctt) ||
            !minstat.Assign(tau_min_ctt) ||
            !starstat.Assign(tau_star_ctt)||
            !tau_smallps.Assign(tau_ctt_smallp)||
            !tau_largeps.Assign(tau_ctt_largep))
           {
            Print("assignment error :", GetLastError());
            return double("inf");
           }
         else
            break;
      default:
         Print(__FUNCTION__," Error invalid input for trend argument");
         return double("nan");
     }

   if(teststat>maxstat[nseries-1])
      return 1.0;
   else
      if(teststat<minstat[nseries-1])
         return 0.0;


   vector tau_coef;

   if(teststat<=starstat[nseries-1])
      tau_coef = small_scaling*(tau_smallps.Row(nseries-1));
   else
      tau_coef = large_scaling*(tau_largeps.Row(nseries-1));


   double rv,tau[];

   ArrayResize(tau,int(tau_coef.Size()));

   for(ulong i=0; i<tau_coef.Size(); i++)
      tau[i]=tau_coef[tau_coef.Size()-1-i];

   rv=polyval(tau,teststat);

   return CNormalDistr::NormalCDF(rv);
  }
Os valores críticos são calculados com a função `mackinnoncrit()`. O acesso aos resultados pode ser obtido pelo método `CriticalValues()`.
//+------------------------------------------------------------------+
//|Computes critical values                                          |
//+------------------------------------------------------------------+
vector mackinnoncrit(ulong nseries = 1,ENUM_TREND trend = TREND_CONST_ONLY, ulong num_obs=ULONG_MAX)
  {
   matrix tau_nc_2010 [] = {{
           {-2.56574, -2.2358, -3.627, 0},  // N [] = 1
           {-1.94100, -0.2686, -3.365, 31.223},
           {-1.61682, 0.2656, -2.714, 25.364}
        }
     };

   matrix tau_c_2010 [] =
     {
        {  {-3.43035, -6.5393, -16.786, -79.433},  // N [] = 1, 1%
           {-2.86154, -2.8903, -4.234, -40.040},   // 5 %
           {-2.56677, -1.5384, -2.809, 0}
        },        // 10 %
        {  {-3.89644, -10.9519, -33.527, 0},       // N [] = 2
           {-3.33613, -6.1101, -6.823, 0},
           {-3.04445, -4.2412, -2.720, 0}
        },
        {  {-4.29374, -14.4354, -33.195, 47.433},  // N [] = 3
           {-3.74066, -8.5632, -10.852, 27.982},
           {-3.45218, -6.2143, -3.718, 0}
        },
        {  {-4.64332, -18.1031, -37.972, 0},       // N [] = 4
           {-4.09600, -11.2349, -11.175, 0},
           {-3.81020, -8.3931, -4.137, 0}
        },
        {  {-4.95756, -21.8883, -45.142, 0},       // N [] = 5
           {-4.41519, -14.0405, -12.575, 0},
           {-4.13157, -10.7417, -3.784, 0}
        },
        {  {-5.24568, -25.6688, -57.737, 88.639},  // N [] = 6
           {-4.70693, -16.9178, -17.492, 60.007},
           {-4.42501, -13.1875, -5.104, 27.877}
        },
        {  {-5.51233, -29.5760, -69.398, 164.295},  // N [] = 7
           {-4.97684, -19.9021, -22.045, 110.761},
           {-4.69648, -15.7315, -5.104, 27.877}
        },
        {  {-5.76202, -33.5258, -82.189, 256.289},  // N [] = 8
           {-5.22924, -23.0023, -24.646, 144.479},
           {-4.95007, -18.3959, -7.344, 94.872}
        },
        {  {-5.99742, -37.6572, -87.365, 248.316},  // N [] = 9
           {-5.46697, -26.2057, -26.627, 176.382},
           {-5.18897, -21.1377, -9.484, 172.704}
        },
        {  {-6.22103, -41.7154, -102.680, 389.33},  // N [] = 10
           {-5.69244, -29.4521, -30.994, 251.016},
           {-5.41533, -24.0006, -7.514, 163.049}
        },
        {  {-6.43377, -46.0084, -106.809, 352.752},  // N [] = 11
           {-5.90714, -32.8336, -30.275, 249.994},
           {-5.63086, -26.9693, -4.083, 151.427}
        },
        {  {-6.63790, -50.2095, -124.156, 579.622},  // N [] = 12
           {-6.11279, -36.2681, -32.505, 314.802},
           {-5.83724, -29.9864, -2.686, 184.116}
        }
     };

   matrix tau_ct_2010 [] =
     {
        {  {-3.95877, -9.0531, -28.428, -134.155},   // N [] = 1
           {-3.41049, -4.3904, -9.036, -45.374},
           {-3.12705, -2.5856, -3.925, -22.380}
        },
        {  {-4.32762, -15.4387, -35.679, 0},         // N [] = 2
           {-3.78057, -9.5106, -12.074, 0},
           {-3.49631, -7.0815, -7.538, 21.892}
        },
        {  {-4.66305, -18.7688, -49.793, 104.244},   // N [] = 3
           {-4.11890, -11.8922, -19.031, 77.332},
           {-3.83511, -9.0723, -8.504, 35.403}
        },
        {  {-4.96940, -22.4694, -52.599, 51.314},    // N [] = 4
           {-4.42871, -14.5876, -18.228, 39.647},
           {-4.14633, -11.2500, -9.873, 54.109}
        },
        {  {-5.25276, -26.2183, -59.631, 50.646},    // N [] = 5
           {-4.71537, -17.3569, -22.660, 91.359},
           {-4.43422, -13.6078, -10.238, 76.781}
        },
        {  {-5.51727, -29.9760, -75.222, 202.253},   // N [] = 6
           {-4.98228, -20.3050, -25.224, 132.03},
           {-4.70233, -16.1253, -9.836, 94.272}
        },
        {  {-5.76537, -33.9165, -84.312, 245.394},   // N [] = 7
           {-5.23299, -23.3328, -28.955, 182.342},
           {-4.95405, -18.7352, -10.168, 120.575}
        },
        {  {-6.00003, -37.8892, -96.428, 335.92},    // N [] = 8
           {-5.46971, -26.4771, -31.034, 220.165},
           {-5.19183, -21.4328, -10.726, 157.955}
        },
        {  {-6.22288, -41.9496, -109.881, 466.068},  // N [] = 9
           {-5.69447, -29.7152, -33.784, 273.002},
           {-5.41738, -24.2882, -8.584, 169.891}
        },
        {  {-6.43551, -46.1151, -120.814, 566.823},  // N [] = 10
           {-5.90887, -33.0251, -37.208, 346.189},
           {-5.63255, -27.2042, -6.792, 177.666}
        },
        {  {-6.63894, -50.4287, -128.997, 642.781},  // N [] = 11
           {-6.11404, -36.4610, -36.246, 348.554},
           {-5.83850, -30.1995, -5.163, 210.338}
        },
        {  {-6.83488, -54.7119, -139.800, 736.376},  // N [] = 12
           {-6.31127, -39.9676, -37.021, 406.051},
           {-6.03650, -33.2381, -6.606, 317.776}
        }
     };

   matrix tau_ctt_2010 [] =
     {
        {  {-4.37113, -11.5882, -35.819, -334.047},  // N [] = 1
           {-3.83239, -5.9057, -12.490, -118.284},
           {-3.55326, -3.6596, -5.293, -63.559}
        },
        {  {-4.69276, -20.2284, -64.919, 88.884},    // N [] =2
           {-4.15387, -13.3114, -28.402, 72.741},
           {-3.87346, -10.4637, -17.408, 66.313}
        },
        {  {-4.99071, -23.5873, -76.924, 184.782},   // N [] = 3
           {-4.45311, -15.7732, -32.316, 122.705},
           {-4.17280, -12.4909, -17.912, 83.285}
        },
        {  {-5.26780, -27.2836, -78.971, 137.871},   // N [] = 4
           {-4.73244, -18.4833, -31.875, 111.817},
           {-4.45268, -14.7199, -17.969, 101.92}
        },
        {  {-5.52826, -30.9051, -92.490, 248.096},   // N [] = 5
           {-4.99491, -21.2360, -37.685, 194.208},
           {-4.71587, -17.0820, -18.631, 136.672}
        },
        {  {-5.77379, -34.7010, -105.937, 393.991},  // N [] = 6
           {-5.24217, -24.2177, -39.153, 232.528},
           {-4.96397, -19.6064, -18.858, 174.919}
        },
        {  {-6.00609, -38.7383, -108.605, 365.208},  // N [] = 7
           {-5.47664, -27.3005, -39.498, 246.918},
           {-5.19921, -22.2617, -17.910, 208.494}
        },
        {  {-6.22758, -42.7154, -119.622, 421.395},  // N [] = 8
           {-5.69983, -30.4365, -44.300, 345.48},
           {-5.42320, -24.9686, -19.688, 274.462}
        },
        {  {-6.43933, -46.7581, -136.691, 651.38},   // N [] = 9
           {-5.91298, -33.7584, -42.686, 346.629},
           {-5.63704, -27.8965, -13.880, 236.975}
        },
        {  {-6.64235, -50.9783, -145.462, 752.228},  // N [] = 10
           {-6.11753, -37.056, -48.719, 473.905},
           {-5.84215, -30.8119, -14.938, 316.006}
        },
        {  {-6.83743, -55.2861, -152.651, 792.577},  // N [] = 11
           {-6.31396, -40.5507, -46.771, 487.185},
           {-6.03921, -33.8950, -9.122, 285.164}
        },
        {  {-7.02582, -59.6037, -166.368, 989.879},  // N [] = 12
           {-6.50353, -44.0797, -47.242, 543.889},
           {-6.22941, -36.9673, -10.868, 418.414}
        }
     };

   vector ret_vector = {0,0,0};

   switch(trend)
     {
      case TREND_CONST_ONLY:
         process(tau_c_2010,ret_vector,num_obs,nseries);
         break;
      case TREND_NONE:
         process(tau_nc_2010,ret_vector,num_obs,nseries);
         break;
      case TREND_LINEAR_CONST:
         process(tau_ct_2010,ret_vector,num_obs,nseries);
         break;
      case TREND_QUAD_LINEAR_CONST:
         process(tau_ctt_2010,ret_vector,num_obs,nseries);
         break;
      default:
         Print("Invalid input for trend argument");
         return ret_vector;
     }

   return ret_vector;
  }


Teste e verificação

Para garantir que nossa implementação funciona corretamente, primeiro realizaremos o teste ADF em Python em uma série aleatória. Em seguida, executaremos o teste ADF para a mesma série no MetaTrader 5 e compararemos os resultados.

O código do teste ADF em Python está abaixo.

import numpy as np
from statsmodels.tsa.stattools import adfuller

#initialize array with 100 elements
x = np.array([0.97841555,0.31931195,0.68205832,0.56256707,0.05741117,0.30310286,
              0.13354023,0.61382247,0.20699517,0.61969826,0.55718307,0.90422809,
              0.24220947,0.08719106,0.26714434,0.39439596,0.93919107,0.07756139,
              0.53188798,0.5074042,0.40468052,0.41235659,0.79233157,0.58948591,
              0.22049794,0.68278894,0.09500558,0.40421058,0.9971231,0.29665678,
              0.08254796,0.8089725,0.61434576,0.97610604,0.84084868,0.8034953,
              0.765576,0.25014613,0.16268394,0.34259495,0.40085009,0.8416158,
              0.6321962,0.45165205,0.12209775,0.40556958,0.96253644,0.30619429,
              0.70573114,0.51574979,0.90168104,0.80757639,0.94321618,0.58849563,
              0.38905617,0.04574506,0.63134219,0.89198262,0.24102367,0.45749333,
              0.76804682,0.50868223,0.91132151,0.7372344,0.32551467,0.27799709,
              0.04059095,0.86024797,0.74600612,0.01264258,0.89364963,0.99373472,
              0.36177673,0.47173929,0.15124127,0.77354455,0.45131917,0.27258213,
              0.69618127,0.35105122,0.1261404,0.21705172,0.88979093,0.97598448,
              0.03787156,0.54034132,0.58336702,0.61701685,0.11673483,0.99940389,
              0.99371688,0.04428256,0.00239077,0.34609507,0.57588045,0.20222325,
              0.20684364,0.29630613,0.65178447,0.86559185])
   
#perform ADF test on array 
result = adfuller(x)

#print ADF statistic and p-value
print(f"ADF statistic: {result[0]}, p-value:{result[1]}")

#print critical values
print(f"Critical values:{result[4]}")
   

Em seguida, executamos a versão MQL5 do teste ADF no mesmo array. O código do script é mostrado abaixo.

//+------------------------------------------------------------------+
//|                                                     ADF_test.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"
#include<ADF.mqh>
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
//---series
   double rand_array[] =
     {
      0.97841555,0.31931195,0.68205832,0.56256707,0.05741117,0.30310286,
      0.13354023,0.61382247,0.20699517,0.61969826,0.55718307,0.90422809,
      0.24220947,0.08719106,0.26714434,0.39439596,0.93919107,0.07756139,
      0.53188798,0.5074042,0.40468052,0.41235659,0.79233157,0.58948591,
      0.22049794,0.68278894,0.09500558,0.40421058,0.9971231,0.29665678,
      0.08254796,0.8089725,0.61434576,0.97610604,0.84084868,0.8034953,
      0.765576,0.25014613,0.16268394,0.34259495,0.40085009,0.8416158,
      0.6321962,0.45165205,0.12209775,0.40556958,0.96253644,0.30619429,
      0.70573114,0.51574979,0.90168104,0.80757639,0.94321618,0.58849563,
      0.38905617,0.04574506,0.63134219,0.89198262,0.24102367,0.45749333,
      0.76804682,0.50868223,0.91132151,0.7372344,0.32551467,0.27799709,
      0.04059095,0.86024797,0.74600612,0.01264258,0.89364963,0.99373472,
      0.36177673,0.47173929,0.15124127,0.77354455,0.45131917,0.27258213,
      0.69618127,0.35105122,0.1261404,0.21705172,0.88979093,0.97598448,
      0.03787156,0.54034132,0.58336702,0.61701685,0.11673483,0.99940389,
      0.99371688,0.04428256,0.00239077,0.34609507,0.57588045,0.20222325,
      0.20684364,0.29630613,0.65178447,0.86559185
     };

//---variables that will be used to store test results
   CAdf adf;
//--- Do ADF test
   if(adf.Adfuller(rand_array))
      Print("ADF test statistic: ", adf.AdfStatistic(), " P-value:", adf.Pvalue(),"\nCritical values \n",adf.CriticalValues());
   else
      Print("ADF test failed");
  }
//+------------------------------------------------------------------+

Primeiro, executamos o script Python:

LD      0       18:30:22.912    Test_adfuller (NFLX_us,Daily)   ADF statistic: -8.495443215534635, p-value:1.2796318143567197e-13
GJ      0       18:30:22.913    Test_adfuller (NFLX_us,Daily)   Critical values:{'1%': -3.4989097606014496, '5%': -2.891516256916761, '10%': -2.5827604414827157}

Depois, o script do MetaTrader 5. Os resultados são os mesmos.

DO      0       18:30:48.460    ADF_test (NFLX_us,D1)   ADF test statistic: -8.495443215534634 P-value:1.2796318143567197e-13
ND      0       18:30:48.460    ADF_test (NFLX_us,D1)   Critical values 
OL      0       18:30:48.460    ADF_test (NFLX_us,D1)   [-3.49890976060145,-2.891516256916761,-2.582760441482716]


Cointegração

Correlação e cointegração são conceitos estatísticos usados para medir as relações entre variáveis, especialmente no contexto de dados de séries temporais. Embora ambos os indicadores meçam relacionamentos, eles servem a propósitos diferentes e são aplicados em cenários distintos. A correlação se refere à medida estatística da força e direção da relação linear entre duas variáveis.

Cointegração



A cointegração, por outro lado, lida com os relacionamentos entre variáveis não estacionárias de séries temporais que possuem um equilíbrio de longo prazo ou relações estáveis. Simplificando, ela determina se existe uma combinação de duas ou mais variáveis não estacionárias que mantém uma relação de longo prazo estável quando consideradas juntas. A cointegração é útil para identificar pares de variáveis que se movem juntas ao longo do tempo, apesar das flutuações de curto prazo. Isso significa que as variáveis estão relacionadas a longo prazo, permitindo que essa relação seja utilizada para estratégias de negociação ou modelagem.

A cointegração é geralmente avaliada por meio de testes estatísticos, como o teste de Engle-Granger ou o teste de Johansen. Esses testes verificam se uma combinação linear de variáveis não estacionárias cria uma série estacionária, indicando uma relação de longo prazo. O teste de Engle-Granger é um procedimento em duas etapas para verificar a cointegração entre duas variáveis em um contexto de séries temporais. Ele envolve a estimação de um modelo de regressão e, em seguida, a realização de testes nos resíduos para determinar se existe cointegração. Se os resíduos do modelo de regressão forem estacionários, isso sugere cointegração entre as duas variáveis. Neste caso, isso indica que, apesar das variáveis não serem estacionárias individualmente, sua combinação linear é estacionária.

O teste de Engle-Granger tem a limitação de não poder lidar com várias sequências simultaneamente. Essa limitação é superada pelo teste de Johansen. Essencialmente, ele é uma extensão da abordagem de Engle-Granger para verificar a cointegração de múltiplas séries em um modelo vetorial autoregressivo. Neste artigo, não consideraremos o teste de Johansen, restringindo-nos a analisar apenas duas séries por vez.


`CointegrationTest.mqh` contém a classe `CCoint` com suas funções. Ele implementa o teste aumentado de Engle-Granger usando a classe `CAdf`. O teste é realizado chamando o método `Aeg()`. São necessários dois arrays de entrada contendo as séries a serem testadas. Os parâmetros opcionais `trend`, `max_lag` e `autolag` são semelhantes aos parâmetros do método `Adfuller()` na classe `CAdf`. Novamente, para a maioria dos testes, os valores padrão devem ser suficientes. Os resultados do teste de cointegração são obtidos chamando três métodos da classe `CCoint`. O primeiro, `CointStatistic`, retorna a estatística ADF do teste ADF interno. `CriticalValues()` retorna um vetor com os valores críticos do teste. O valor p pode ser obtido chamando `Pvalue()`.

//+------------------------------------------------------------------+
//|                                            CointegrationTest.mqh |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#include<ADF.mqh>

//+------------------------------------------------------------------+
//|Class CCoint                                                      |
//|    implements cointegration test of two series                   |
//+------------------------------------------------------------------+
class CCoint
{
 private:
  double m_coint_stat;       //ADF test statistic
  double m_coint_pvalue;     //cointegration p-value
  vector m_coint_critvalues; //Cointegration critical values
  CAdf   *m_adf;             //CAdf object pointer
 public:
  CCoint(void);
  ~CCoint(void);
  
  bool Aeg(double &in_one[],double &in_two[],ENUM_TREND trend = TREND_CONST_ONLY,ulong max_lag=0,ENUM_INFO_CRIT autolag=INFO_AIC);
  
  double CointStatistic(void){ return m_coint_stat; }
  double Pvalue(void)        { return m_coint_pvalue;}
  vector CriticalValues(void){ return m_coint_critvalues;}
};
//+------------------------------------------------------------------+
//| Constructor                                                      |
//+------------------------------------------------------------------+
CCoint::CCoint(void)
{
 m_adf = new CAdf();
 
 m_coint_critvalues = vector::Zeros(3);
 
 m_coint_stat=m_coint_pvalue=EMPTY_VALUE;
}
//+------------------------------------------------------------------+
//| Destructor                                                       |
//+------------------------------------------------------------------+
CCoint::~CCoint(void)
{
 if(CheckPointer(m_adf)==POINTER_DYNAMIC)
     delete m_adf;
}
//+------------------------------------------------------------------+
//| Test for cointegration                                           |
//+------------------------------------------------------------------+
bool CCoint::Aeg(double &in_one[],double &in_two[],ENUM_TREND trend = TREND_CONST_ONLY,ulong max_lag=0,ENUM_INFO_CRIT autolag=INFO_AIC)
  {
//---  
   if(CheckPointer(m_adf)==POINTER_INVALID)
    {
     Print("Critical Internal error: Invalid CAdf pointer");
     return false;
    }
//---    
   if(in_one.Size()<1 || in_two.Size()<1 || in_one.Size()!=in_two.Size())
     {
      Print(__FUNCTION__," Invalid input for one or both arrays");
      return false;
     }

   vector y1,temp;
   matrix y2;

   if(!y1.Assign(in_one) || !temp.Assign(in_two) || !y2.Resize(temp.Size(),1) || !y2.Col(temp,0))
     {
      Print(__FUNCTION__," Assignment error: ", GetLastError());
      return false;
     }


   ulong obs,kvars=1;
   obs = y2.Rows();
   kvars++;
   matrix xx;

   if(trend==TREND_NONE)
     {
      if(!xx.Copy(y2))
        {
         Print(__FUNCTION__," Assignment error: ", GetLastError());
         return false;
        }
     }
   else
    if(!addtrend(y2,xx,trend,false))
        {
         Print(__FUNCTION__," Assignment error: ", GetLastError());
         return false;
        }

   OLS ols;

   if(!ols.Fit(y1,xx))
      return false;

   if(ols.Rsqe()< 1 - 100*SQRTEPS)
     {
      double resid[];

      vector resd = ols.Residuals();

      ArrayResize(resid,int(resd.Size()));

      for(uint i = 0; i<resid.Size(); i++)
         resid[i]=resd[i];

      if(!m_adf.Adfuller(resid,max_lag,TREND_NONE,autolag))
         return false;

      m_coint_stat = m_adf.AdfStatistic();
     }
   else
     {
      Print("They are (almost) perfectly collinear.\nCointegration test is not reliable in this case");
      m_coint_stat=double("nan");
     }

   if(trend==TREND_NONE)
      m_coint_critvalues.Fill(double("nan"));
   else
      m_coint_critvalues = mackinnoncrit(kvars,trend,obs-1);

   m_coint_pvalue = mackinnonp(m_coint_stat,trend,kvars);

   return true;
  }    


Verificação de Símbolos para Cointegração

Para a demonstração final, criaremos um script MQL5 que utiliza `CCoint` para verificar a cointegração de uma lista de símbolos. Os usuários inserem uma lista de símbolos separados por vírgulas. Defina a data de início e a duração do histórico de preços de fechamento a ser analisado. `ConfidenceLevel` permite que os usuários escolham o nível de significância desejado. Isso determina o valor crítico que será comparado com a estatística ADF para obter o resultado final.

//+------------------------------------------------------------------+
//|                                    SymbolCointegrationTester.mq5 |
//|                                  Copyright 2023, MetaQuotes Ltd. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link      "https://www.mql5.com"
#property version   "1.00"
#property script_show_inputs
#include <CointegrationTest.mqh>
//+------------------------------------------------------------------+
//| enumeration maps to confidence levels of 99%,95%, and 90%        |
//+------------------------------------------------------------------+
enum ENUM_CONFIDENCE_LEVEL
  {
   CONF_99=0,//99%
   CONF_95,//95%
   CONF_90 //90%
  };
//--- input parameters
input string   Symbols = "FB_us,GOOG_us,MSFT_us,NFLX_us,NVDA_us,AAPL_us,TSLA_us";//Comma separated list of symbols to test
input ENUM_TIMEFRAMES TimeFrame = PERIOD_D1;
input datetime StartDate=D'2022.01.01 00:00:01';
input int Size = 250;//History length
input ENUM_CONFIDENCE_LEVEL ConfidenceLevel=CONF_90;
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
//---Check Size input value
   if(Size<100)
     {
      Print("Invalid input for Size");
      return;
     }
//---array for symbols
   string symbols[];
//---process list of symbols from user input
   int num_symbols = StringSplit(Symbols,StringGetCharacter(",",0),symbols);
//---incase list contains ending comma
   if(symbols[num_symbols-1]=="")
      num_symbols--;

//---in case there are less than two symbols specified
   if(num_symbols<2)
     {
      Print("Invalid input. Please list at least two symbols");
      return;
     }
//---output matrix of indices
   matrix sym_combos;
//---fill sym_combos with index values of symbols array
   PairedCombinations(symbols,sym_combos,num_symbols);
//---price arrays for pair of symbols
   double symA_prices [], symB_prices[];
//---output vectors holding results of cointegration test
   vector stats, critvals;
//---symbol pairs and result output
   string symA,symB,result;
//---CCoint object
   CCoint coint;
//---loop through all paired combinations from list
   for(ulong i=0; i<sym_combos.Rows(); i++)
     {
      //--- get symbol pair for current combination
      symA = symbols[int(sym_combos[i][0])];
      symB = symbols[int(sym_combos[i][1])];
      //--- get prices for the pair of symbols
      if(CopyClose(symA,TimeFrame,StartDate,Size,symA_prices)<Size||
         CopyClose(symB,TimeFrame,StartDate,Size,symB_prices)<Size)
        {
         Print("Failed to copy close prices ", ::GetLastError());
         return;
        }
      //--- test the pair for cointegreation
      if(!coint.Aeg(symA_prices,symB_prices))
        {
         Print("Cointegration test failed ", ::GetLastError());
         return;
        }
      //---
      vector critvals = coint.CriticalValues();
      //--- prepare results output for a test
      if(coint.CointStatistic()<critvals[ConfidenceLevel])
         result="likely cointegrated.";
      else
         result="likely not cointegrated.";
      //--- output the result from cointegration test
      Print(symA," and ",symB, " are ", result);
     }
  }
//+------------------------------------------------------------------+
//| Combinations: generates paired combinations                      |
//+------------------------------------------------------------------+
bool PairedCombinations(string &in[], matrix &out,int count = 0)
  {
//---check input array
   if(in.Size()<1)
     {
      Print(__FUNCTION__," input array is empty");
      return false;
     }
//---set value for upto equal to the number of elements that should be
//---considered in the input array
   int upto = (count>1 && count<ArraySize(in))?count:ArraySize(in);
//--- calculate the number of rows equivalent to number of combinations
   ulong rows = ulong(MathFactorial(upto)/(MathFactorial(2)*MathFactorial(upto-2)));
//---resize output matrix accordingly
   out.Resize(rows,2);
//---fill output matrix with indexes of input array
   for(uint i=0,z=0; i<in.Size(); i++)
     {
      for(uint k = i+1; k<in.Size(); k++,z++)
        {
         out[z][0]=i;
         out[z][1]=k;
        }
     }
//---return
   return true;
  }
//+------------------------------------------------------------------+


Em nosso exemplo, testaremos os símbolos Google, Facebook, Microsoft, Netflix, Nvidia, Apple e Tesla. Os resultados da execução do script são mostrados abaixo.

HN      0       18:37:31.239    SymbolCointegrationTester (NFLX_us,D1)  FB_us and GOOG_us are likely not cointegrated.
PQ      0       18:37:31.280    SymbolCointegrationTester (NFLX_us,D1)  FB_us and MSFT_us are likely not cointegrated.
IE      0       18:37:31.322    SymbolCointegrationTester (NFLX_us,D1)  FB_us and NFLX_us are likely not cointegrated.
MG      0       18:37:31.365    SymbolCointegrationTester (NFLX_us,D1)  FB_us and NVDA_us are likely not cointegrated.
PH      0       18:37:31.411    SymbolCointegrationTester (NFLX_us,D1)  FB_us and AAPL_us are likely not cointegrated.
NL      0       18:37:31.453    SymbolCointegrationTester (NFLX_us,D1)  FB_us and TSLA_us are likely not cointegrated.
EO      0       18:37:31.496    SymbolCointegrationTester (NFLX_us,D1)  GOOG_us and MSFT_us are likely not cointegrated.
ES      0       18:37:31.540    SymbolCointegrationTester (NFLX_us,D1)  GOOG_us and NFLX_us are likely not cointegrated.
FE      0       18:37:31.582    SymbolCointegrationTester (NFLX_us,D1)  GOOG_us and NVDA_us are likely not cointegrated.
CF      0       18:37:31.623    SymbolCointegrationTester (NFLX_us,D1)  GOOG_us and AAPL_us are likely not cointegrated.
EJ      0       18:37:31.665    SymbolCointegrationTester (NFLX_us,D1)  GOOG_us and TSLA_us are likely not cointegrated.
HM      0       18:37:31.705    SymbolCointegrationTester (NFLX_us,D1)  MSFT_us and NFLX_us are likely not cointegrated.
RN      0       18:37:31.744    SymbolCointegrationTester (NFLX_us,D1)  MSFT_us and NVDA_us are likely not cointegrated.
LP      0       18:37:31.785    SymbolCointegrationTester (NFLX_us,D1)  MSFT_us and AAPL_us are likely not cointegrated.
OD      0       18:37:31.825    SymbolCointegrationTester (NFLX_us,D1)  MSFT_us and TSLA_us are likely not cointegrated.
IG      0       18:37:31.866    SymbolCointegrationTester (NFLX_us,D1)  NFLX_us and NVDA_us are likely not cointegrated.
QI      0       18:37:31.906    SymbolCointegrationTester (NFLX_us,D1)  NFLX_us and AAPL_us are likely not cointegrated.
FP      0       18:37:31.946    SymbolCointegrationTester (NFLX_us,D1)  NFLX_us and TSLA_us are likely cointegrated.
EO      0       18:37:31.987    SymbolCointegrationTester (NFLX_us,D1)  NVDA_us and AAPL_us are likely not cointegrated.
RS      0       18:37:32.026    SymbolCointegrationTester (NFLX_us,D1)  NVDA_us and TSLA_us are likely not cointegrated.
DE      0       18:37:32.072    SymbolCointegrationTester (NFLX_us,D1)  AAPL_us and TSLA_us are likely not cointegrated.

Eles mostram que Netflix e Tesla provavelmente são cointegrados com um nível de confiança de 90%.

Segue o código para realizar o mesmo teste em Python junto com os resultados.

"""
 Script demonstrates use of coint() from statsmodels
 to test symbols for cointegration
"""
# imports 
from statsmodels.tsa.stattools import coint
from itertools import combinations
from datetime import datetime
import MetaTrader5 as mt5
import pandas as pd
import numpy as np
import pytz

#initialize connection to mt5
if not mt5.initialize():
    print("initialize() failed ")
    mt5.shutdown()
 
#set up timezone infomation   
tz=pytz.timezone("Etc/UTC")

#use time zone to set correct date for history data extraction
startdate = datetime(2022,1,1,hour=0,minute=0,second=1,tzinfo=tz)

#list the symbols 
Symbols = ["FB_us","GOOG_us","MSFT_us","NFLX_us","NVDA_us","AAPL_us","TSLA_us"]

#set length of data history
num_bars = 250

#set up the shape of the data structure to store prices 
data = np.zeros((num_bars,len(Symbols)))
prices = pd.DataFrame(data,columns=Symbols)

#fill prices dataframe with close prices
for symbol in Symbols:
    prices[symbol]=[rate[4]  for rate in mt5.copy_rates_from(symbol,mt5.TIMEFRAME_D1,startdate,num_bars)]
    
#we donot need mt5 from here 
mt5.shutdown()

#generate pairs from Symbols list 
pairs = list(combinations(prices.columns,2))

#set our desired significance level, 0.01->99%, 0.05->95%, 0.1->90%
confidence_level = 0.1

#do the test for cointegration on each pair and print results
for pair in pairs:
    df=prices[list(pair)]
    adf_stat,pvalue,critvalues=coint(df.values[:,0],df.values[:,1])
    if pvalue < confidence_level:
        print(pair[0]," and ",pair[1], " are likely cointegrated")
    else:
        print(pair[0]," and ",pair[1], " are likely not cointegrated")   

Resultados do Python

MR      0       18:35:17.835    SymbolCointegration (NFLX_us,Daily)     FB_us  and  GOOG_us  are likely not cointegrated
GE      0       18:35:17.851    SymbolCointegration (NFLX_us,Daily)     FB_us  and  MSFT_us  are likely not cointegrated
DI      0       18:35:17.867    SymbolCointegration (NFLX_us,Daily)     FB_us  and  NFLX_us  are likely not cointegrated
CJ      0       18:35:17.867    SymbolCointegration (NFLX_us,Daily)     FB_us  and  NVDA_us  are likely not cointegrated
MO      0       18:35:17.882    SymbolCointegration (NFLX_us,Daily)     FB_us  and  AAPL_us  are likely not cointegrated
JQ      0       18:35:17.898    SymbolCointegration (NFLX_us,Daily)     FB_us  and  TSLA_us  are likely not cointegrated
CD      0       18:35:17.914    SymbolCointegration (NFLX_us,Daily)     GOOG_us  and  MSFT_us  are likely not cointegrated
MF      0       18:35:17.930    SymbolCointegration (NFLX_us,Daily)     GOOG_us  and  NFLX_us  are likely not cointegrated
QK      0       18:35:17.946    SymbolCointegration (NFLX_us,Daily)     GOOG_us  and  NVDA_us  are likely not cointegrated
HM      0       18:35:17.962    SymbolCointegration (NFLX_us,Daily)     GOOG_us  and  AAPL_us  are likely not cointegrated
OO      0       18:35:17.978    SymbolCointegration (NFLX_us,Daily)     GOOG_us  and  TSLA_us  are likely not cointegrated
MS      0       18:35:17.978    SymbolCointegration (NFLX_us,Daily)     MSFT_us  and  NFLX_us  are likely not cointegrated
PD      0       18:35:17.994    SymbolCointegration (NFLX_us,Daily)     MSFT_us  and  NVDA_us  are likely not cointegrated
MF      0       18:35:18.010    SymbolCointegration (NFLX_us,Daily)     MSFT_us  and  AAPL_us  are likely not cointegrated
RJ      0       18:35:18.042    SymbolCointegration (NFLX_us,Daily)     MSFT_us  and  TSLA_us  are likely not cointegrated
RM      0       18:35:18.058    SymbolCointegration (NFLX_us,Daily)     NFLX_us  and  NVDA_us  are likely not cointegrated
GP      0       18:35:18.074    SymbolCointegration (NFLX_us,Daily)     NFLX_us  and  AAPL_us  are likely not cointegrated
LN      0       18:35:18.089    SymbolCointegration (NFLX_us,Daily)     NFLX_us  and  TSLA_us  are likely cointegrated
EF      0       18:35:18.105    SymbolCointegration (NFLX_us,Daily)     NVDA_us  and  AAPL_us  are likely not cointegrated
QI      0       18:35:18.121    SymbolCointegration (NFLX_us,Daily)     NVDA_us  and  TSLA_us  are likely not cointegrated
OJ      0       18:35:18.137    SymbolCointegration (NFLX_us,Daily)     AAPL_us  and  TSLA_us  are likely not cointegrated

Considerações finais

Analisamos a implementação do algoritmo aumentado de Dickey-Fuller no MQL5 e o utilizamos para implementar o teste de Engle-Granger para cointegração. O teste ADF é uma ferramenta importante para aqueles interessados em estudar estratégias de negociação de pares ou arbitragem estatística. Todo o código descrito no artigo está incluído em um arquivo zip. A tabela abaixo lista todo o conteúdo deste arquivo.

Arquivo
Descrição
Mql5\include\OLS.mqh
Contém a definição da classe OLS, que implementa a regressão de mínimos quadrados comum.
Mql5\include\ADF.mqh
Contém definições de várias funções e a classe CAdf, que implementa o teste ADF.
Mql5\include\CointegrationTest.mqh
 Define a classe CCoint, que implementa o teste de cointegração usando o método aumentado de Engle-Granger.
Mql5\scripts\ADF_test.mq5
Script MQL5 usado para verificar a implementação do teste ADF no MQL5.
Mql5\scripts\SymbolCointegrationTester.mq5
Script para testar a cointegração de símbolos no MetaTrader 5.
Mql5\scripts\Test_adfuller.py
Script Python que usa a implementação statsmodels do teste ADF para verificar nossa implementação no MQL5.
Mql5\scripts\SymbolCointegration.py
Versão Python do SymbolCointegrationTester.


Traduzido do Inglês pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/en/articles/13991

Arquivos anexados |
Test_adfuller.py (1.71 KB)
ADF.mqh (30.73 KB)
OLS.mqh (13.36 KB)
ADF_test.mq5 (2.34 KB)
Mql5.zip (17.2 KB)
Rede neural na prática: Pseudo Inversa (I) Rede neural na prática: Pseudo Inversa (I)
Aqui, vamos começar a ver como podermos implementar, usando MQL5 puro, o cálculo de pseudo inversa. Apesar do código que será visto, será de fato bem mais complicado, para os iniciantes, do que eu de fato gostaria de apresentar. Ainda estou pensando em como o explicar de forma simples. Veja isto como uma oportunidade de estudar um o código pouco comum. Então vá com calma. Sem pressa e correria. Mesmo que ele não vise ser eficiente e de rápida execução. O objetivo é ser o mais didático possível.
Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle Introdução ao MQL5 (Parte 2): Variáveis pré-definidas, funções gerais e operadores de fluxo de controle
Neste artigo, continuamos a explorar a linguagem de programação MQL5. Esta série de artigos não é apenas um material didático, mas sim uma porta de entrada para o mundo da programação. O que os torna especiais? Eu me esforcei para manter a simplicidade nas explicações, tornando conceitos complexos acessíveis a todos. Para obter os melhores resultados, é necessário praticar ativamente tudo o que discutimos. Só assim você obterá o máximo proveito desses artigos.
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
Como ganhar dinheiro realizando pedidos de traders no serviço "Freelance" Como ganhar dinheiro realizando pedidos de traders no serviço "Freelance"
MQL5 Freelance é um serviço online onde desenvolvedores criam aplicativos de negociação para traders em troca de remuneração. O serviço funciona com sucesso desde 2010: até o momento, mais de 100.000 trabalhos foram realizados, totalizando $7 milhões. Como podemos ver, há bastante dinheiro em circulação aqui.