データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF
打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。
MQL5入門(第4部):構造体、クラス、時間関数をマスターする
最新記事でMQL5プログラミングの秘密を解き明かしましょう。構造体、クラス、時間関数の本質に迫り、コーディングの旅に力を与えます。初心者から経験豊富な開発者まで、個のガイドは、MQL5をマスターするための貴重な洞察を提供し、複雑な概念を簡素化します。プログラミングのスキルを高め、アルゴリズム取引の世界で一歩先を行きましょう。
MQL5入門(第3部):MQL5のコア要素をマスターする
この初心者向けの記事では、MQL5プログラミングの基本を解説します。配列、カスタム関数、プリプロセッサ、イベント処理など、すべてのコードをわかりやすく説明し、すべての行にアクセスできるようにします。すべてのステップで理解を深める独自のアプローチで、MQL5のパワーを引き出しましょう。この記事はMQL5をマスターするための基礎となるもので、各コード行の説明に重点を置き、明確で充実した学習体験を提供します。
MQL5入門(第2部):定義済み変数、共通関数、制御フロー文の操作
連載第2部の光り輝く旅に出かけましょう。これらの記事は単なるチュートリアルではなく、プログラミング初心者と魔法使いが共に集う魔法の世界への入り口です。この旅を本当に魔法のようなものにしているのは何でしょうか。連載第2部は、複雑な概念を誰にでも理解できるようにした、さわやかなシンプルさが際立っています。読者の質問にお答えしながら、双方向的に私たちと関わることで、充実した個別学習体験をお約束します。MQL5を理解することが誰にとっても冒険となるようなコミュニティを作りましょう。魔法の世界へようこそ。
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト
この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)
第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。
MQL5での定量分析:有望なアルゴリズムの実装
定量分析とは何なのか、また、主要プレーヤーがどのように定量分析を使用しているのかを分析します。MQL5言語で定量分析アルゴリズムの1つを作成します。
ニューラルネットワークが簡単に(第67回):過去の経験を活かした新しい課題の解決
この記事では、訓練セットにデータを収集する方法について引き続き説明します。明らかに、学習プロセスには環境との絶え間ない相互作用が必要です。しかし、状況はさまざまです。
母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。
PythonとMQL5を使用して初めてのグラスボックスモデルを作る
機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。
母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。
ニューラルネットワークが簡単に(第66回):オフライン学習における探索問題
モデルは、用意された訓練データセットのデータを使用してオフラインで訓練されます。一定の利点がある反面、環境に関する情報が訓練データセットのサイズに大きく圧縮されてしまうというマイナス面もあります。それが逆に、探求の可能性を狭めています。この記事では、可能な限り多様なデータで訓練データセットを埋めることができる方法について考えます。
Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成
この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。
ニューラルネットワークが簡単に(第65回):Distance Weighted Supervised Learning (DWSL)
この記事では、教師あり学習法と強化学習法の交差点で構築された興味深いアルゴリズムに触れます。
ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法
以前の記事でおこなったテストの結果、訓練された戦略の最適性は、使用する訓練セットに大きく依存するという結論に達しました。この記事では、モデルを訓練するための軌道を選択するための、シンプルかつ効果的な手法を紹介します。
トレーダーに優しい損切りと利食い
損切り(ストップロス)と利食い(テイクプロフィット)は取引結果に大きな響を与えます。この記事では、最適な逆指値注文の値を見つけるためのいくつかの方法を見ていきます。
Scikit-Learnライブラリの分類器モデルとONNXへの書き出し
この記事では、Scikit-Learnライブラリで利用可能なすべての分類器モデルを適用して、フィッシャーのIrisデータセットの分類タスクを解決する方法について説明します。これらのモデルをONNX形式に変換し、その結果得られたモデルをMQL5プログラムで利用してみます。さらに、完全なIrisデータセットで元のモデルとONNXバージョンの精度を比較します。
初心者からプロまでMQL5をマスターする(第1回):プログラミングを始める
この記事は、プログラミングに関する連載の紹介です。読者がこれまでプログラミングを扱ったことがないことを前提としているため、この連載は基礎から始まります。プログラミング知識レベル:全くの初心者。
CatBoostモデルにおける交差検証と因果推論の基本、ONNX形式への書き出し
この記事では、機械学習を使用してボットを作成する方法を提案しています。
多銘柄多期間指標の作成
この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。
MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。
ニューラルネットワークが簡単に(第63回):Unsupervised Pretraining for Decision Transformer (PDT)
引き続き、Decision Transformer法のファミリーについて説明します。前回の記事から、これらの手法のアーキテクチャの基礎となるTransformerの訓練はかなり複雑なタスクであり、訓練のために大規模なラベル付きデータセットが必要であることにすでに気づきました。この記事では、ラベル付けされていない軌跡をモデルの予備訓練に使用するアルゴリズムについて見ていきます。
ニューラルネットワークが簡単に(第62回):階層モデルにおけるDecision Transformerの使用
最近の記事で、Decision Transformerを使用するためのいくつかの選択肢を見てきました。この方法では、現在の状態だけでなく、以前の状態の軌跡や、その中でおこなわれた行動も分析することができます。この記事では、階層モデルにおけるこの方法の使用に焦点を当てます。
ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題
オフライン訓練では、訓練サンプルデータに基づいてエージェントの方策を最適化します。その結果、エージェントは自分の行動に自信を持つことができます。しかし、そのような楽観論は必ずしも正当化されるとは限らず、模型の操作中にリスクを増大させる可能性があります。今日は、こうしたリスクを軽減するための方法の1つを紹介しましょう。
ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)
最後の2つの記事は、望ましい報酬の自己回帰モデルの文脈で行動シーケンスをモデル化するDecision Transformer法に費やされました。この記事では、この方法の別の最適化アルゴリズムについて見ていきます。
ニューラルネットワークが簡単に(第59回):コントロールの二分法(DoC)
前回の記事では、Decision Transformerを紹介しました。しかし、外国為替市場の複雑な確率的環境は、提示した手法の可能性を完全に実現することを許しませんでした。今回は、確率的環境におけるアルゴリズムの性能向上を目的としたアルゴリズムを紹介します。
母集団最適化アルゴリズム:差分進化(DE)
この記事では、これまでに取り上げたアルゴリズムの中で最も議論の的となっているアルゴリズム、差分進化(DE)アルゴリズムについて考察します。
母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム
本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム
この記事では、無生物由来の興味深いアルゴリズム、つまり川床形成プロセスをシミュレーションするIntelligent Water Drops (IWD)について考察しています。このアルゴリズムのアイデアにより、従来の格付けのリーダーであったSDSを大幅に改善することが可能になりました。いつものように、新しいリーダー(修正SDSm)は添付ファイルにあります。
母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム
この記事では、無生物の自然にヒントを得た別の最適化アルゴリズムである荷電系探索(CSS)アルゴリズムについて検討します。この記事の目的は、物理学と力学の原理に基づいた新しい最適化アルゴリズムを提示することです。
リプレイシステムの開発(第32回):受注システム(I)
これまで開発してきたものの中で、このシステムが最も複雑であることは、おそらく皆さんもお気づきでしょうし、最終的にはご納得いただけると思います。あとは非常に単純なことですが、取引サーバーの動作をシミュレーションするシステムを作る必要があります。取引サーバーの操作方法を正確に実装する必要性は、当然のことのように思えます。少なくとも言葉ではです。ただし、リプレイ/シミュレーションシステムのユーザーにとって、すべてがシームレスで透明なものとなるようにする必要があります。
リプレイシステムの開発(第31回):エキスパートアドバイザープロジェクト - C_Mouseクラス(V)
リプレイ/シミュレーションの終了まで残り時間を表示できるタイマーが必要です。これは一見、シンプルで迅速な解決策に見えるかもしれません。多くの人は、取引サーバーが使用しているのと同じシステムを適応して使用しようとするだけです。しかし、この解決策を考えるとき、多くの人が考慮しないことがあります。リプレイでは、そしてシミュレーションではなおさら、時計の動きは異なるということです。こうしたことが、このようなシステムの構築を複雑にしています。
母集団最適化アルゴリズム:Stochastic Diffusion Search (SDS)
この記事では、ランダムウォークの原理に基づく非常に強力で効率的な最適化アルゴリズムである確SDS(Stochastic Diffusion Search、確率的拡散探索)について説明します。このアルゴリズムは、複雑な多次元空間で最適解を求めることができ、収束速度が速く、局所極値を避けることができるのが特徴です。
リプレイシステムの開発(第30回):エキスパートアドバイザープロジェクト - C_Mouseクラス(IV)
今日は、プログラマーとしての職業生活のさまざまな段階で非常に役立つテクニックを学びます。多くの場合、制限されているのはプラットフォーム自体ではなく、制限について話す人の知識です。この記事では、常識と創造性があれば、クレイジーなプログラムなどを作成することなく、MetaTrader 5 プラットフォームをより面白くて多用途にし、シンプルでありながら安全で信頼性の高いコードを作成できることを説明します。創造力を駆使して、ソース コードを1行も削除したり追加したりすることなく、既存のコードを変更します。
リプレイシステムの開発(第29回):エキスパートアドバイザープロジェクト - C_Mouseクラス(III)
C_Mouseクラスを改良した後は、分析のためのまったく新しいフレームワークを作るためのクラスを作ることに集中しましょう。この新しいクラスを作るのに、継承やポリモーフィズムは使用しません。その代わりに、価格線に新しいオブジェクトを追加します。それがこの記事でやろうとしていることです。次回は、分析結果を変更する方法について見るつもりです。これらはすべて、C_Mouseクラスのコードを変更することなくおこなわれます。実際には、継承やポリモーフィズムを使用すれば、もっと簡単に実現できるでしょう。しかし、同じ結果を得る方法は他にもあります。
リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)
人々が初めてコンピューティングが可能なシステムを作り始めたとき、すべてには、プロジェクトを熟知しているエンジニアの参加が必要でした。コンピュータ技術の黎明期、プログラミング用の端末すらなかった時代の話です。それが発展し、より多くの人々が何かを創造できることに興味を持つようになると、新しいアイデアやプログラミングの方法が現れ、以前のようなコネクタの位置を変えるスタイルに取って変わりました。最初の端末が登場したのはこの時です。
リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)
この記事では、C_Mouseクラスを実装します。このクラスは、最高水準でプログラミングする能力を提供します。しかし、高水準や低水準のプログラミング言語について語ることは、コードに卑猥な言葉や専門用語を含めることではありません。逆です。高水準プログラミング、低水準プログラミングというのは、他のプログラマーが理解しやすいか、しにくいかという意味です。