Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester
Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (II)
Denken wir über einen unabhängigen Expert Advisor nach. Zuvor haben wir einen indikatorbasierten Expert Advisor besprochen, der auch mit einem unabhängigen Skript zum Zeichnen der Risiko- und Ertragsgeometrie zusammenarbeitet. Heute werden wir die Architektur eines MQL5 Expert Advisors besprechen, der alle Funktionen in einem Programm integriert.
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)
In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 11): Automatisieren der Optimierung (erste Schritte)
Um einen guten EA zu erhalten, müssen wir mehrere gute Parametersätze von Handelsstrategie-Instanzen für ihn auswählen. Dies kann manuell erfolgen, indem die Optimierung für verschiedene Symbole durchgeführt und dann die besten Ergebnisse ausgewählt werden. Aber es ist besser, diese Arbeit an das Programm zu delegieren und sich produktiveren Tätigkeiten zu widmen.
Entwicklung eines Replay Systems (Teil 46): Chart Trade Projekt (V)
Sind Sie es leid, Zeit mit der Suche nach genau der Datei zu verschwenden, die Ihre Anwendung zum Funktionieren braucht? Wie wäre es, alles in die ausführbare Datei aufzunehmen? Auf diese Weise müssen Sie nicht nach den Dingen suchen. Ich weiß, dass viele Menschen diese Form der Verteilung und Speicherung nutzen, aber es gibt einen viel geeigneteren Weg. Zumindest was die Verteilung von ausführbaren Dateien und deren Speicherung betrifft. Die hier vorgestellte Methode kann sehr nützlich sein, da Sie den MetaTrader 5 selbst als hervorragenden Assistenten verwenden können, ebenso wie MQL5. Außerdem ist es nicht so schwer zu verstehen.
Preisgesteuertes CGI-Modell: Erweiterte Datennachbearbeitung und Implementierung
In diesem Artikel befassen wir uns mit der Entwicklung eines vollständig anpassbaren Skripts für den Preisdatenexport mit MQL5, das einen neuen Fortschritt in der Simulation des CGI-Modells Price Man darstellt. Wir haben fortschrittliche Verfeinerungstechniken implementiert, um sicherzustellen, dass die Daten nutzerfreundlich und für Animationszwecke optimiert sind. Außerdem werden wir die Möglichkeiten von Blender 3D bei der effektiven Arbeit mit und der Visualisierung von Preisdaten kennenlernen und sein Potenzial für die Erstellung dynamischer und ansprechender Animationen demonstrieren.
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel
Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 9): Sammeln von Optimierungsergebnissen für einzelne Handelsstrategie-Instanzen
Schauen wir uns die wichtigsten Phasen der EA-Entwicklung an. Eine der ersten Aufgaben besteht darin, eine einzelne Instanz der entwickelten Handelsstrategie zu optimieren. Versuchen wir, alle notwendigen Informationen über die Testergebnisse während der Optimierung an einem Ort zu sammeln.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 8): Belastungstest und Handhabung eines neuen Balkens
Im weiteren Verlauf haben wir immer mehr gleichzeitig laufende Instanzen von Handelsstrategien in einem EA verwendet. Versuchen wir herauszufinden, wie viele Instanzen wir erreichen können, bevor wir an Ressourcengrenzen stoßen.
Entwicklung eines Replay Systems (Teil 45): Chart Trade Projekt (IV)
Der Hauptzweck dieses Artikels ist die Einführung und Erläuterung der Klasse C_ChartFloatingRAD. Wir haben einen Chart Trade-Indikator, der auf recht interessante Weise funktioniert. Wie Sie vielleicht bemerkt haben, haben wir immer noch eine relativ kleine Anzahl von Objekten im Chart, und dennoch erhalten wir die erwartete Funktionalität. Die im Indikator enthaltenen Werte können bearbeitet werden. Die Frage ist, wie ist das möglich? Dieser Artikel wird die Dinge etwas klarer machen.
Entwicklung eines Replay Systems (Teil 44): Chart Trade Projekt (III)
Im vorherigen Artikel habe ich erklärt, wie Sie Vorlagedaten zur Verwendung in OBJ_CHART manipulieren können. In diesem Artikel habe ich das Thema nur umrissen, ohne auf Einzelheiten einzugehen, da die Arbeit in dieser Version sehr vereinfacht war. Dies geschah, um die Erklärung des Inhalts zu erleichtern, denn trotz der scheinbaren Einfachheit vieler Dinge waren einige davon nicht so offensichtlich, und ohne das Verständnis des einfachsten und grundlegendsten Teils wäre man nicht in der Lage, das gesamte Bild wirklich zu verstehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode
Zuvor haben wir die Auswahl einer Gruppe von Handelsstrategie-Instanzen mit dem Ziel, die Ergebnisse ihrer gemeinsamen Operation zu verbessern, nur für den gleichen Zeitraum bewertet, in dem die Optimierung der einzelnen Instanzen durchgeführt wurde. Mal sehen, was in der Vorwärtsperiode passiert.
Algorithmen zur Optimierung mit Populationen: Der Wal-Optimierungsalgorithmus (WOA)
Der Wal-Optimierungsalgorithmus (WOA) ist ein metaheuristischer Algorithmus, der durch das Verhalten und die Jagdstrategien von Buckelwalen inspiriert wurde. Die Hauptidee von WOA ist die Nachahmung der so genannten Fressmethode „Blasennetz“, bei der Wale Blasen um ihre Beute herum erzeugen und sie dann in einer spiralförmigen Bewegung angreifen.
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus
Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe
Nach der Optimierung der Handelsstrategie erhalten wir eine Reihe von Parametern. Wir können sie verwenden, um mehrere Instanzen von Handelsstrategien zu erstellen, die in einem EA kombiniert werden. Früher haben wir das manuell gemacht. Hier werden wir versuchen, diesen Prozess zu automatisieren.
Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen
Hier tauchen wir in die Welt der Hybridisierung von Optimierungsalgorithmen ein, indem wir uns drei Haupttypen ansehen: Strategiemischung, sequentielle und parallele Hybridisierung. Wir werden eine Reihe von Experimenten durchführen, in denen wir die relevanten Optimierungsalgorithmen kombinieren und testen.
Die Rolle der Qualität von Zufallszahlengeneratoren für die Effizienz von Optimierungsalgorithmen
In diesem Artikel werden wir uns den Mersenne-Twister-Zufallszahlengenerator ansehen und ihn mit dem Standardgenerator in MQL5 vergleichen. Wir werden auch herausfinden, welchen Einfluss die Qualität des Zufallszahlengenerators auf die Ergebnisse der Optimierungsalgorithmen hat.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 5): Variable Positionsgrößen
In den vorangegangenen Teilen konnte der in Entwicklung befindliche Expert Advisor (EA) nur eine feste Positionsgröße für den Handel verwenden. Dies ist für Testzwecke akzeptabel, aber für den Handel mit einem echten Konto nicht ratsam. Lassen Sie uns den Handel mit variablen Positionsgrößen ermöglichen.
GIT: Was ist das?
In diesem Artikel werde ich ein sehr wichtiges Werkzeug für Entwickler vorstellen. Wenn Sie mit GIT nicht vertraut sind, lesen Sie diesen Artikel, um eine Vorstellung davon zu bekommen, was es ist und wie man es mit MQL5 verwendet.
Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)
Die meisten Menschen, die programmieren lernen wollen oder davon träumen, haben eigentlich keine Ahnung, was sie da tun. Ihre Tätigkeit besteht darin, dass sie versuchen, Dinge auf eine bestimmte Art und Weise zu schaffen. Bei der Programmierung geht es jedoch nicht darum, geeignete Lösungen zu finden. Auf diese Weise können mehr Probleme als Lösungen entstehen. Hier werden wir etwas Fortgeschritteneres und daher etwas anderes machen.
Entwicklung eines Wiedergabesystems (Teil 42): Chart Trader Projekt (I)
Lassen Sie uns etwas Interessanteres schaffen. Ich möchte die Überraschung nicht verderben, also folgen Sie dem Artikel, um ein besseres Verständnis zu erhalten. Gleich zu Beginn dieser Serie über die Entwicklung des Replay/Simulator-Systems habe ich gesagt, dass die MetaTrader 5-Plattform sowohl in dem von uns entwickelten System als auch auf dem realen Markt auf die gleiche Weise verwendet werden soll. Es ist wichtig, dass dies richtig gemacht wird. Niemand möchte trainieren und lernen, mit einem Werkzeug zu kämpfen, während er während des Kampfes ein anderes nutzen muss.
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5
Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 23): CNNs
Convolutional Neural Networks sind ein weiterer Algorithmus des maschinellen Lernens, der sich darauf spezialisiert hat, mehrdimensionale Datensätze in ihre wichtigsten Bestandteile zu zerlegen. Wir sehen uns an, wie dies typischerweise erreicht wird, und untersuchen eine mögliche Anwendung für Händler in einer anderen Signalklasse des MQL5-Assistenten.
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil I)
In diesem Artikel wird ein einzigartiges Experiment vorgestellt, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Die Arbeit in dieser Richtung wird weitere Erkenntnisse darüber liefern, welche spezifischen Algorithmen ihre Suche mit den vom Nutzer festgelegten Koordinaten als Ausgangspunkt erfolgreich fortsetzen können und welche Faktoren ihren Erfolg beeinflussen.
Die Basisklasse der Populationsalgorithmen als Rückgrat einer effizienten Optimierung
Der Artikel präsentiert einen einzigartigen Forschungsversuch, eine Vielzahl von Populationsalgorithmen in einer einzigen Klasse zu kombinieren, um die Anwendung von Optimierungsmethoden zu vereinfachen. Dieser Ansatz eröffnet nicht nur Möglichkeiten für die Entwicklung neuer Algorithmen, einschließlich hybrider Varianten, sondern schafft auch eine universelle Basis-Testumgebung. Dieser Stand wird zu einem wichtigen Instrument für die Auswahl des optimalen Algorithmus für eine bestimmte Aufgabe.
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil II)
Wir setzen unser Experiment fort, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Forschungsergebnisse werden vorgelegt.
Entwicklung eines Replay Systems (Teil 41): Beginn der zweiten Phase (II)
Wenn Ihnen bis zu diesem Punkt alles richtig erschien, bedeutet dies, dass Sie bei der Entwicklung von Anwendungen nicht wirklich an die langfristige Perspektive denken. Im Laufe der Zeit müssen Sie keine neuen Anwendungen mehr programmieren, sondern nur noch dafür sorgen, dass sie zusammenarbeiten. Schauen wir uns also an, wie man den Mauszeiger fertigstellt.
Entwicklung eines Replay Systems (Teil 40): Beginn der zweiten Phase (I)
Heute werden wir über die neue Phase des Replay/Simulator-Systems sprechen. In dieser Phase wird das Gespräch wirklich interessant und sehr inhaltsreich. Ich empfehle Ihnen dringend, den Artikel sorgfältig zu lesen und die darin enthaltenen Links zu nutzen. Dies wird Ihnen helfen, den Inhalt besser zu verstehen.
Entwicklung eines Replay Systems (Teil 39): Den Weg ebnen (III)
Bevor wir zur zweiten Stufe der Entwicklung übergehen, müssen wir einige Ideen überarbeiten. Wissen Sie, wie Sie MQL5 dazu bringen können, das zu tun, was Sie brauchen? Haben Sie jemals versucht, über das hinauszugehen, was in der Dokumentation enthalten ist? Wenn nicht, dann machen Sie sich bereit. Denn wir werden etwas tun, was die meisten Menschen normalerweise nicht tun.
Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen
In diesem Artikel werden wir einen Blick auf eine der berühmten Strategien von Bill Williams werfen, sie diskutieren und versuchen, die Strategie mit anderen Indikatoren und mit Vorhersagen zu verbessern.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren
Die Suche nach neuronaler Architektur, ein automatischer Ansatz zur Bestimmung der idealen Einstellungen für neuronale Netze, kann bei vielen Optionen und großen Testdatensätzen von Vorteil sein. Wir untersuchen, wie dieser Prozess bei gepaarten Eigenvektoren noch effizienter gestaltet werden kann.
Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)
In diesem vierten Teil greifen wir die zuvor entwickelten Simple Hedge und Simple Grid Expert Advisors (EAs) wieder auf. Wir konzentrieren uns darauf, den Simple Grid EA durch mathematische Analysen und einen Brute-Force-Ansatz zu verfeinern, mit dem Ziel, eine optimale Strategie anzuwenden. Dieser Artikel befasst sich eingehend mit der mathematischen Optimierung der Strategie und legt den Grundstein für die künftige Erforschung der kodierungsbasierten Optimierung in späteren Ausgaben.
Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb
Der Artikel behandelt die praktischen Aspekte der Verwendung von Optimierungsalgorithmen, um die besten EA-Parameter im laufenden Betrieb zu finden, sowie die Virtualisierung von Handelsoperationen und EA-Logik. Der Artikel kann als Anleitung für die Implementierung von Optimierungsalgorithmen in einen EA verwendet werden.
Algorithmen zur Optimierung mit Populationen: Künstliche multisoziale Suchobjekte (MSO)
Dies ist eine Fortsetzung des vorangegangenen Artikels, der sich mit dem Konzept der sozialen Gruppen befasst. In dem Artikel wird die Entwicklung sozialer Gruppen anhand von Bewegungs- und Gedächtnisalgorithmen untersucht. Die Ergebnisse werden dazu beitragen, die Entwicklung sozialer Systeme zu verstehen und sie bei der Optimierung und Suche nach Lösungen anzuwenden.
Entwicklung eines Replay Systems (Teil 38): Den Weg ebnen (II)
Viele Menschen, die sich für MQL5-Programmierer halten, verfügen nicht über die Grundkenntnisse, die ich in diesem Artikel erläutern werde. Viele Menschen halten MQL5 für ein begrenztes Werkzeug, aber der eigentliche Grund ist, dass sie nicht über die erforderlichen Kenntnisse verfügen. Wenn Sie also etwas nicht wissen, brauchen Sie sich dafür nicht zu schämen. Es ist besser, sich dafür zu schämen, nicht zu fragen. MetaTrader 5 einfach dazu zu zwingen, die Indikatorduplikation zu deaktivieren, gewährleistet in keiner Weise eine Zwei-Wege-Kommunikation zwischen dem Indikator und dem Expert Advisor. Davon sind wir noch weit entfernt, aber die Tatsache, dass sich der Indikator auf dem Chart nicht dupliziert, stimmt uns zuversichtlich.
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil I
In diesem Artikel werden wir verschiedene Methoden untersuchen, die in binären genetischen und anderen Populationsalgorithmen verwendet werden. Wir werden uns die Hauptkomponenten des Algorithmus, wie Selektion, Crossover und Mutation, und ihre Auswirkungen auf die Optimierung ansehen. Darüber hinaus werden wir Methoden der Datendarstellung und ihre Auswirkungen auf die Optimierungsergebnisse untersuchen.
MQL5-Assistent - Techniken, die Sie kennen sollten (14): Zeitreihenvorhersage mit mehreren Zielvorgaben durch STF
Die räumlich-zeitliche Fusion, bei der sowohl räumliche als auch zeitliche Metriken zur Modellierung von Daten verwendet werden, ist vor allem bei der Fernerkundung und einer Vielzahl anderer visueller Aktivitäten nützlich, um ein besseres Verständnis unserer Umgebung zu erlangen. Dank eines veröffentlichten Artikels verfolgen wir einen neuen Ansatz, indem wir sein Potenzial für Händler untersuchen.
Datenwissenschaft und maschinelles Lernen (Teil 21): Neuronale Netze entschlüsseln, Optimierungsalgorithmen entmystifiziert
Tauchen Sie ein in das Herz der neuronalen Netze, indem wir die Optimierungsalgorithmen, die innerhalb des neuronalen Netzes verwendet werden, entmystifizieren. In diesem Artikel erfahren Sie, mit welchen Schlüsseltechniken Sie das volle Potenzial neuronaler Netze ausschöpfen und Ihre Modelle zu neuen Höhen der Genauigkeit und Effizienz führen können.
Deep Learning GRU model with Python to ONNX with EA, and GRU vs LSTM models
We will guide you through the entire process of DL with python to make a GRU ONNX model, culminating in the creation of an Expert Advisor (EA) designed for trading, and subsequently comparing GRU model with LSTN model.
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.